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FOREWORD

This volume is the next in a sequence of AAS/AIAA Astrodynamics Specialist Confer-
ence volumes which are published as a part of Advances in the Astronautical Sciences. Sev-
eral other sequences or subseries have been established in this series. Among them are:
Spaceflight Mechanics (published for the AAS annually, but recently changed to every sec-
ond odd number year), Guidance and Control (annual), International Space Conferences of
Pacific-basin Societies (ISCOPS, formerly PISSTA), and AAS Annual Conference proceed-
ings. Proceedings volumes for earlier conferences are still available either in hard copy, digi-
tal, or in microfiche form. The appendix of the volume lists proceedings available through
the American Astronautical Society.

Astrodynamics 2019, Volume 171, Advances in the Astronautical Sciences, consists of
four parts totaling about 4,600 pages, plus a CD ROM/digital format version which also
contains all the available papers. A chronological index by AAS paper number, and an au-
thor index appear at the end of the main linking file, and are appended to the fourth part of
the volume.

In our proceedings volumes the technical accuracy and editorial quality are essentially
the responsibility of the authors. The session chairs and our editors do not review all papers
in detail; however, format and layout are improved when necessary by the publisher.

We commend the general chairs, technical chairs, session chairs and the other partici-
pants for their role in making the conference such a success. We would also like to thank
those who assisted in organizational planning, registration and numerous other functions re-
quired for a successful conference.

The current proceedings are valuable to keep specialists abreast of the state of the art;
however, even older volumes contain some articles that have become classics and all vol-
umes have archival value. This current material should be a boon to aerospace specialists.

AAS/AIAA ASTRODYNAMICS VOLUMES

Astrodynamics 2019 appears as Volume 171, Advances in the Astronautical Sciences.
This publication presents the complete proceedings of the AAS/AIAA Astrodynamics Spe-
cialist Conference 2019.

Astrodynamics 2018, Volume 167, Advances in the Astronautical Sciences, Eds. P. Singla
et al., 3988p, four parts plus a CD ROM Supplement.
Astrodynamics 2017, Volume 162, Advances in the Astronautical Sciences, Eds. J.S.
Parker et al., 4064p, four parts plus a CD ROM Supplement.
Astrodynamics 2015, Volume 156, Advances in the Astronautical Sciences, Eds. M. Majji et
al., 4512p, three parts plus a CD ROM Supplement.
Astrodynamics 2013, Volume 150, Advances in the Astronautical Sciences, Eds. S.B.
Broschart et al., 3532p, three parts plus a CD ROM Supplement.
Astrodynamics 2011, Volume 142, Advances in the Astronautical Sciences, Eds. H. Schaub
et al., 3916p, four parts plus a CD ROM Supplement.
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Astrodynamics 2009, Volume 135, Advances in the Astronautical Sciences, Eds. A.V. Rao
et al., 2446p, three parts plus a CD ROM Supplement.
Astrodynamics 2007, Volume 129, Advances in the Astronautical Sciences, Eds. R.J.
Proulx et al., 2892p, three parts plus a CD ROM Supplement.
Astrodynamics 2005, Volume 123, Advances in the Astronautical Sciences, Eds. B.G.
Williams et al., 2878p, three parts plus a CD ROM Supplement.
Astrodynamics 2003, Volume 116, Advances in the Astronautical Sciences, Eds. J. de
Lafontaine et al., 2746p, three parts plus a CD ROM Supplement.
Astrodynamics 2001, Volume 109, Advances in the Astronautical Sciences, Eds. D.B.
Spencer et al., 2592p, three parts.
Astrodynamics 1999, Volume 103, Advances in the Astronautical Sciences, Eds. K.C.
Howell et al., 2724p, three parts.
Astrodynamics 1997, Volume 97, Advances in the Astronautical Sciences, Eds. F.R. Hoots
et al., 2190p, two parts.
Astrodynamics 1995, Volume 90, Advances in the Astronautical Sciences, Eds. K.T.
Alfriend et al., 2270p, two parts; Microfiche Suppl., 6 papers (Vol. 72 AAS Microfiche Series).
Astrodynamics 1993, Volume 85, Advances in the Astronautical Sciences, Eds. A.K. Misra
et al., 2750p, three parts; Microfiche Suppl., 9 papers (Vol. 70 AAS Microfiche Series)
Astrodynamics 1991, Volume 76, Advances in the Astronautical Sciences, Eds. B. Kaufman
et al., 2590p, three parts; Microfiche Suppl., 29 papers (Vol. 63 AAS Microfiche Series)
Astrodynamics 1989, Volume 71, Advances in the Astronautical Sciences, Eds. C.L.
Thornton et al., 1462p, two parts; Microfiche Suppl., 25 papers (Vol. 59 AAS Microfiche
Series)

Astrodynamics 1987, Volume 65, Advances in the Astronautical Sciences, Eds. J.K.
Soldner et al., 1774p, two parts; Microfiche Suppl., 48 papers (Vol. 55 AAS Microfiche
Series)

Astrodynamics 1985, Volume 58, Advances in the Astronautical Sciences, Eds. B. Kaufman
et al., 1556p, two parts; Microfiche Suppl. 55 papers (Vol. 51 AAS Microfiche Series)
Astrodynamics 1983, Volume 54, Advances in the Astronautical Sciences, Eds. G.T. Tseng
et al., 1370p, two parts; Microfiche Suppl., 41 papers (Vol. 45 AAS Microfiche Series)
Astrodynamics 1981, Volume 46, Advances in the Astronautical Sciences, Eds. A.L.
Friedlander et al., 1124p, two parts; Microfiche Suppl., 41 papers (Vol. 37 AAS Microfiche
Series)

Astrodynamics 1979, Volume 40, Advances in the Astronautical Sciences, Eds. P.A. Penzo
et al., 996p, two parts; Microfiche Suppl., 27 papers (Vol. 32 AAS Microfiche Series)
Astrodynamics 1977, Volume 27, AAS Microfiche Series, 73 papers
Astrodynamics 1975, Volume 33, Advances in the Astronautical Sciences, Eds., W.F.
Powers et al., 390p; Microfiche Suppl., 59 papers (Vol. 26 AAS Microfiche Series)

Astrodynamics 1973, Volume 21, AAS Microfiche Series, 44 papers
Astrodynamics 1971, Volume 20, AAS Microfiche Series, 91 papers

AAS/AIAA SPACEFLIGHT MECHANICS VOLUMES
Spaceflight Mechanics 2019, Volume 168, Advances in the Astronautical Sciences, Eds.
F. Topputo et al., 4388p., four parts, plus a CD ROM supplement.
Spaceflight Mechanics 2017, Volume 160, Advances in the Astronautical Sciences, Eds.
J.W. McMahon et al., 4290p., four parts, plus a CD ROM supplement.
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Spaceflight Mechanics 2016, Volume 158, Advances in the Astronautical Sciences, Eds.
R. Zanetti et al., 4796p., four parts, plus a CD ROM supplement.
Spaceflight Mechanics 2015, Volume 155, Advances in the Astronautical Sciences, Eds.
R. Furfaro et al., 3626p., three parts, plus a CD ROM supplement.
Spaceflight Mechanics 2014, Volume 152, Advances in the Astronautical Sciences, Eds.
R.S. Wilson et al., 3848p., four parts, plus a CD ROM supplement.
Spaceflight Mechanics 2013, Volume 148, Advances in the Astronautical Sciences, Eds.
S. Tanygin et al., 4176p., four parts, plus a CD ROM supplement.
Spaceflight Mechanics 2012, Volume 143, Advances in the Astronautical Sciences, Eds.
J.V. McAdams et al., 2612p., three parts, plus a CD ROM supplement.
Spaceflight Mechanics 2011, Volume 140, Advances in the Astronautical Sciences, Eds.
M.K. Jah et al., 2622p., three parts, plus a CD ROM supplement.
Spaceflight Mechanics 2010, Volume 136, Advances in the Astronautical Sciences, Eds.
D. Mortari et al., 2652p., three parts, plus a CD ROM supplement.
Spaceflight Mechanics 2009, Volume 134, Advances in the Astronautical Sciences, Eds.
A.M. Segerman et al., 2496p., three parts, plus a CD ROM supplement.
Spaceflight Mechanics 2008, Volume 130, Advances in the Astronautical Sciences, Eds.
J.H. Seago et al., 2190p., two parts, plus a CD ROM supplement.
Spaceflight Mechanics 2007, Volume 127, Advances in the Astronautical Sciences, Eds.
M.R. Akella et al., 2230p., two parts, plus a CD ROM supplement.
Spaceflight Mechanics 2006, Volume 124, Advances in the Astronautical Sciences, Eds.
S.R. Vadali et al., 2282p., two parts, plus a CD ROM supplement.
Spaceflight Mechanics 2005, Volume 120, Advances in the Astronautical Sciences, Eds.
D.A. Vallado et al., 2152p., two parts, plus a CD ROM supplement.
Spaceflight Mechanics 2004, Volume 119, Advances in the Astronautical Sciences, Eds.
S.L. Coffey et al., 3318p., three parts, plus a CD ROM supplement.

Spaceflight Mechanics 2003, Volume 114, Advances in the Astronautical Sciences, Eds.
D.J. Scheeres et al., 2294p, three parts, plus a CD ROM supplement.

Spaceflight Mechanics 2002, Volume 112, Advances in the Astronautical Sciences, Eds.
K.T. Alfriend et al., 1570p, two parts.
Spaceflight Mechanics 2001, Volume 108, Advances in the Astronautical Sciences, Eds. L.A.
D’Amario et al., 2174p, two parts.
Spaceflight Mechanics 2000, Volume 105, Advances in the Astronautical Sciences, Eds.
C.A. Kluever et al., 1704p, two parts.
Spaceflight Mechanics 1999, Volume 102, Advances in the Astronautical Sciences, Eds.
R.H. Bishop et al., 1600p, two parts.
Spaceflight Mechanics 1998, Volume 99, Advances in the Astronautical Sciences, Eds.
J.W. Middour et al., 1638p, two parts; Microfiche Suppl., 2 papers (Vol. 78 AAS Microfiche
Series).
Spaceflight Mechanics 1997, Volume 95, Advances in the Astronautical Sciences, Eds.
K.C. Howell et al., 1178p, two parts.
Spaceflight Mechanics 1996, Volume 93, Advances in the Astronautical Sciences, Eds.
G.E. Powell et al., 1776p, two parts; Microfiche Suppl., 3 papers (Vol. 73 AAS Microfiche
Series).
Spaceflight Mechanics 1995, Volume 89, Advances in the Astronautical Sciences, Eds.
R.J. Proulx et al., 1774p, two parts; Microfiche Suppl., 5 papers (Vol. 71 AAS Microfiche
Series).
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Spaceflight Mechanics 1994, Volume 87, Advances in the Astronautical Sciences, Eds.
J.E. Cochran, Jr. et al., 1272p, two parts.
Spaceflight Mechanics 1993, Volume 82, Advances in the Astronautical Sciences, Eds.
R.G. Melton et al., 1454p, two parts; Microfiche Suppl., 2 papers (Vol. 68 AAS Microfiche
Series).

Spaceflight Mechanics 1992, Volume 79, Advances in the Astronautical Sciences, Eds.
R.E. Diehl et al., 1312p, two parts; Microfiche Suppl., 11 papers (Vol. 65 AAS Microfiche
Series).

Spaceflight Mechanics 1991, Volume 75, Advances in the Astronautical Sciences, Eds.
J.K. Soldner et al., 1353p, two parts; Microfiche Suppl., 15 papers (Vol. 62 AAS Microfiche
Series).

All of these proceedings are available from Univelt, Inc., P.O. Box 28130, San Diego,
California 92198 (Web Site: http://www.univelt.com), publishers for the AAS.

Robert H. Jacobs, Series Editor
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PREFACE

The 2019 Astrodynamics Specialist Conference was held at the Westin in Portland,
ME from August 11–15, 2019. The meeting was sponsored by the American Astronautical
Society (AAS) Space Flight Mechanics Committee and co-sponsored by the American Insti-
tute of Aeronautics and Astronautics (AIAA) Astrodynamics Technical Committee. Regis-
tered attendance was 346 professionals (including 110 students and 11 retirees); attendees in-
cluded engineers, scientists, and mathematicians representing government agencies, the mili-
tary services, industry, and academia from the United States and abroad.

A total of 343 abstracts were submitted for the conference and finally, 277 technical
papers were presented in 28 sessions on topics related to space-flight mechanics and
astrodynamics. There were four special sessions:

Artificial Intelligence in Astrodynamics I – Machine Learning
Artificial Intelligence in Astrodynamics II – Reinforcement Learning
GTOC - X (Global Trajectory Optimization Competition)
NASA CARA CA Requirements Development Initiative

As the conference was held less than a month after the 50th anniversary of the Apollo
XI moon landing, the guest speaker for the social off-site event was Michael López-Alegría,
veteran of three space shuttle missions and one International Space Station mission. Also,
special commemorative patches and stickers were designed and provided to all attendees.

Other special events for the conference included the Dirk Brouwer Award Plenary lec-
ture by Dr. Martin Lo of the Mission Design & Navigation Section, Outer Planets Mission
Analysis Group, Jet Propulsion Laboratory, California Institute of Technology, on the topic
of The Interplanetary Superhighway for the Development of the Earth’s Neighborhood. In
addition to the plenary talk, the Breakwell Student Award was presented, and a special
award was presented to Professor Kathleen Howell, Purdue University honoring her service
as the editor-in-chief of the Journal of the Astronautical Sciences. Also recognized was one
new AAS fellow: Professor Panagiotis Tsiotras, Professor and David and Andrew Lewis
Chair, Guggenheim School of Aerospace Engineering, Associate Director, Institute for Ro-
botics and Intelligent Machines, Georgia Institute of Technology.

The editors extend their gratitude to all the Session Chairs who ensured the smooth or-
ganization of all sessions: Ossama Abdelkhalik, Kyle T. Alfriend, Juan Arrieta, Natasha
Bosanac, Angela Bowes, John Christian, Fabio Curti, Simone D’Amico, Diane Davis, Atri
Dutta, Roberto Furfaro, Pradipto Ghosh, Brian Gunter, Yanping Guo, Matthew Hejduk,
Siamak Hesar, Kenneth Horneman, Jennifer Hudson, Peter Lai, David Lujan, Alinda
Mashiku, Craig McLaughlin, Anastassios Petropoulos, Anil Rao, Puneet Singla, Alex
Sizemore, Rohan Sood, David B. Spencer, Jeffrey Stuart, Matthew Wilkins, and Roby Wil-
son.

Our gratitude also goes to Jim Way and the Web Administration Sub-committee for
their support and assistance in the successful organization of this conference. We also extend
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our gratitude to the Westin staff, for their diligence and commitment to excellence both dur-
ing the organization and execution of this event.

Dr. Islam I. Hussein Dr. Christopher Scott
AAS Technical Chair AAS General Chair
Dr. Kenneth R. Horneman Mr. Brian W. Hansen
AIAA Technical Chair AIAAGeneral Chair
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AAS 19-613 

IMPULSIVE LEAST-SQUARES ORBIT MAINTENANCE 
USING GAUSS’S VARIATIONAL EQUATIONS 

Gang Zhang* and Daniele Mortari† 

Based on the Gauss’s Variational Equations (GVEs), the least-squares approach is inves-
tigated in orbit transfer problems to estimate impulsive orbital-element corrections. Both 
single impulse and multiple impulses are considered using the 1st-order and 2nd-order 
integral-form of GVEs. For the single impulse, a nonlinear least-squares iteration method 
for the minimum error is provided to simultaneously solve impulse vector and impulse 
position. For the multiple impulses, a least-squares method for the minimum impulse cost 
is proposed to solve the three-impulse and two-impulse corrections for the in-plane and 
out-of-plane orbital elements, respectively. The impulse positions are analytically de-
rived, and impulse vectors are obtained by the least-squares method. Numerical examples 
are provided to verify the proposed least-squares single-impulse and multiple-impulse 
methods.  

[View Full File] 
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AAS 19-649 

OPTICAL METHODS FOR FINDING NEW NATURAL SATELLITES 
OF THE SOLAR SYSTEM’S OUTER PLANETS 

Paul McKee,* William Parker† and John Christian‡ 

The distribution of orbits of the natural satellites (moons) around the outer planets offers 
important clues about the dynamical history of our Solar System. It is necessary, there-
fore, that we construct image acquisition strategies and data processing techniques that 
allow us to find new moons in a systematic way. Given the great distance between Earth 
and the outer planets, there are advantages to searching for moons --- especially very 
small moons --- with a spacecraft operating in the vicinity of the planet. In this paper we 
present an image processing technique based on the Radon Transform that can automati-
cally find an unknown (new) moon in a sequence of images collected by an exploration 
spacecraft. 
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AAS 19-657 

SOLAR RADIATION PRESSURE EFFECTS ON THE ORBITAL 
MOTION AT SEL2 FOR THE JAMES WEBB SPACE TELESCOPE 

Ariadna Farres* and Jeremy Petersen† 

Due to James Webb Space Telescope’s large sunshield, which will always be facing the 
Sun to protect the observatory’s instruments, Solar Radiation Pressure (SRP) has an im-
portant effect on its orbital motion around the Sun-Earth L2. Moreover, SRP is highly 
dependent on the observatory’s attitude with respect to the Sun-observatory line. This 
paper explores the impact of SRP for different attitude profiles on the size of a reference 
orbit.  
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AAS 19-742 

OPTIMAL DEORBIT FROM LOW EARTH ORBIT 
WITH ELECTRIC PROPULSION 

Nathan L. Parrish,* Jeffrey S. Parker,† Cameron Meek‡ 
and Aurelie Heritier§ 

As more and more spacecraft use the low Earth orbit (LEO) regime, it is critical that all 
players act responsibly and deorbit at end-of-life. Here, we analyze approaches to mini-
mize the time to deorbit. Key parameters are identified and described, considering con-
straints on fuel budget and thrust limitations from eclipses. A simple and effective gen-
eral strategy for deorbit is identified. The OneWeb internet constellation is used as an ex-
ample for finding the optimal parameters. The objective of the deorbit strategy is to en-
sure safety for every vehicle in nearby orbits, while deorbiting quickly within propellant 
and operational constraints.  

[View Full Paper] 
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AAS 19-748 

A SURVEY OF MISSION OPPORTUNITIES TO 
TRANS NEPTUNIAN OBJECTS, PART VI: A SEARCH FOR 

MULTI-TARGET MISSIONS 

Daniel Johnson,* Zackery Crum,* Garrett Mitchell,* Samuel Walters,* 
Adam Dalton,* Brandon Davis,* Ben Dolmovich,* Meghan Green,* 

Amanda Williams,* Gerald Wise* and James Evans Lyne† 

In the outermost reaches of the Solar System, beyond the orbit of Neptune, there lies a 
vast collection of unexplored bodies. This abundance of potential destinations (over 3000 
as of 2019), affords the opportunity for missions with multiple targets. The present study 
describes the results of a search for such opportunities. The most favorable case found 
using a single probe is a Huya-Quaoar flyby mission, departing Earth in late 2027 with a 
departure C3 of 90.5 km2/s2. If launched two years earlier, a delta V Earth gravity assist 
could decrease the departure C3 to approximately 29 km2/s2. Both scenarios use Jupiter 
flybys to gain energy and lower propulsive requirements, and in both cases the periapse 
at Jupiter is greater than 16 Jovian radii, yielding an acceptably low radiation dose.  

[View Full Paper] 
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AAS 19-753 

EXTENDED PHASE-SPACE REALIZATION FOR ATTITUDE 
DYNAMICS OF AN AXISYMMETRIC BODY IN ECCENTRIC ORBIT 

Roshan T. Eapen,* Manoranjan Majji† and Kyle T. Alfriend‡ 

This paper investigates the attitude dynamics of a rigid axisymmetric body in an eccentric 
orbit using a Hamiltonian formulation in the Serret-Andoyer variables. This is formulated 
using the extended phase-space, wherein the time-like variable arising from the eccentric 
nature of the orbit is treated as a coordinate. The gravity-gradient potential is modeled as 
a perturbation for averaging using a Lieseries method. Two formulations are developed to 
treat the case of a fast-rotating and slow-rotating body in an eccentric orbit, respectively. 
Analytical investigations lead to identifying resonant commensurabilities and relative 
equilibria in the slow-rotating rigid body problem.  

[View Full Paper] 

 

 

 

                                                                 
* Graduate Student, Department of Aerospace Engineering, Texas A&M University, College Station, Texas 77843-
3141, USA. 
† Assistant Professor, Department of Aerospace Engineering, Texas A&M University. 
‡ TEES Distinguished Research Professor, Department of Aerospace Engineering, Texas A&M University. 

40

http://www.univelt.com/book=7770


  

AAS 19-796 

DEEP SPACE ATOMIC CLOCK MISSION OVERVIEW 

Todd A. Ely,* Jill Seubert,† John Prestage,‡ Robert Tjoelker,§ Eric Burt,**  
Angela Dorsey,†† Daphna Enzer,‡‡ Randy Herrera,§§ Da Kuang,***   

David Murphy,†††  David Robison,‡‡‡  Gabrielle Seal,§§§   
Jeff Stuart**** and Rabi Wang†††† 

The Deep Space Atomic Clock (DSAC), a NASA Technology Demonstration Mission 
(TDM), was launched on June 25, 2019 into low Earth orbit. The mission plan is to con-
duct a yearlong demonstration of a mercury ion (199Hg+) atomic clock to characterize its 
space-based performance, and to validate its utility for deep space navigation and radio 
science. This work will briefly review the DSAC technology and its benefits for deep 
space navigation and science then describe the DSAC mission’s operational concepts, 
methods, and, finally, anticipated results.  
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AAS 19-802 

OPTIMIZATION OF LOW THRUST TRANSFER ORBITS OF A 
SPACECRAFT CONSIDERING THE RADIATION HAZARD FROM 

THE VAN ALLEN BELTS 

Rodrigo N. Schmitt,* Alexander Sukhanov,†  
Antonio F. B. A. Prado‡ and Gerson Barbosa§ 

The goal of this work is to measure the amount of radiation a spacecraft receives once it 
leaves the sphere of influence of Earth in a Low Thrust Orbit (LTO). The spacecraft 
crosses the Van Allen belts many times during the transfer, in which particles such as 
protons and electrons can damage the onboard electronic equipment. Through mathemat-
ically modeling of the density of particles from the belt in space, it was possible to inte-
grate it in time and compute the total dose of radiation absorbed by the spacecraft accord-
ing to the chosen trajectory. Therefore, different trajectories were computed varying in 
eccentricity and type of propulsion system, which gave the following final parameters of 
interest: mission duration, fuel consumption, time in Van Allen belts and total fluence of 
radiation absorbed. Using an optimization algorithm, thousands of trajectories were tested 
and the best ones with respect to the final parameters were given as a table of results.  
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AAS 19-860 

VEHICLE AND MISSION DESIGN OPTIONS FOR 
VERY LOW EARTH ORBIT CUBESATS 

James W. Williams,* Michael I. Gray† and Zachary R. Putnam‡ 

Aerodynamics provide a small but significant effect on the dynamics of vehicles operat-
ing in low Earth orbit, especially CubeSats with limited control authority. Current analy-
sis tools treat the translational and attitude dynamics of these vehicles in a decoupled 
sense. A coupling of these effects provides a more holistic view of the problem. In this 
work, various control system and physical properties of CubeSats are compared based on 
metrics of detumble time, total mission lifetime, and ram-pointing effectiveness. The con-
trol systems used are a magnetorquer with either a simplified Bcross detumble algorithm 
or a Quaternion Rate Feedback (QRF) pointing algorithm, or a set of reaction wheels us-
ing QRF. The physical properties examined are the total available control effort, the ini-
tial apoapsis of the orbit, the duty cycle of the control system, and the percent of eclipse 
in which control is active. Results indicate that a vehicle equipped with the Bcross algo-
rithm will have limited pointing performance which limits the mission lifetime, while re-
action wheels using QRF are capable of asymptotic stability around the ram direction, 
and magnetorquers using the same algorithm are able to provide nearly the same total 
mission duration, at a cost of worse pointing acquisition time.  
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AAS 19-903 

STABLE LOW ALTITUDE LUNAR PERIODIC ORBITS USING 
THE GRAIL GRAVITY FIELD 

Sean McArdle* and Ryan P. Russell† 

Families of lunar periodic orbits are found in unaveraged dynamics using gravitational 
effects from Earth and a nonspherical lunar gravity field. This study revisits a periodic 
orbit search predating the GRAIL mission, now incorporating a higher fidelity gravity 
field with improvements to far side resolution. New differential correction equations are 
derived to account for generic plane crossings that can be useful for a variety of applica-
tions. These equations are used in conjunction with natural parameter continuation to 
drive periodic orbit family searches. The resulting repeat ground track solutions represent 
high fidelity lunar frozen orbits. The solver leverages parallelized high performance 
computing to account for the significant computational burden of the large spherical har-
monics model. This study confirms the presence of stable periodic orbit families using 
the GRAIL derived gravity field. Stable orbits are found with perilune altitudes that start 
roughly 1000 km from the Moon’s mean radius and are followed to impact trajectories. 
Stable, low eccentricity, periodic orbits that remain below 100 km altitude with inclina-
tions near 85 deg are identified as ideal stationkeeping destinations for human space-
flight’s return to the Moon.  
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AAS 19-621 

GENERALIZED COMPOSITE NONCERTAINTY-EQUIVALENCE 
ADAPTIVE CONTROL OF ORBITING SPACECRAFT IN 

VICINITY OF ASTEROID 

Keum W. Lee* and Sahjendra N. Singh† 

The paper presents composite noncertainty-equivalence adaptive control (NCEA) systems 
for the closed orbit and hovering control of spacecraft in the vicinity of a uniformly rotating 
asteroid. In this study, the mass and moment of inertia matrix of the asteroid, and the mass 
of the spacecraft are treated as unknown constant parameters. The objective is to control 
the orbit of the spacecraft despite uncertainties in gravitational force of asteroid. For the 
trajectory control of spacecraft, first a generalized composite noncertainty-equivalence 
adaptive (NCEA) control system - based on the immersion and invariance theory - is de-
veloped. This system consists of a control module for stabilization and an identifier for the 
estimation of parameters. The identifier includes a dynamic integral type parameter adapta-
tion law, which is formed by combining the update laws of the NCEA system, gradient al-
gorithm-based identification scheme, and the classical certainty-equivalence adaptive sys-
tem. The classical component of the composite update law is used to cancel certain sign-
indefinite function in the derivative of a Lyapunov function. The full estimate of each un-
known parameter is the sum of an algebraic function and a signal generated by the compo-
site integral type adaptation law. The gradient algorithm-based update rule is a function of 
estimation model error. Then by a proper choice of adaptation gains of the generalized con-
trol system, two additional composite control systems - (i) a NCEA system with gradient 
algorithm-based adaptation law, and (ii) a NCEA controller with classical update law – are 
derived. By the Lyapunov analysis, it is shown that in each composite closed-loop system, 
trajectory tracking error asymptotically converges to zero, and that the system trajectories 
converge to certain attractive manifold in the state space. The attractive manifold of the 
composite systems with gradient scheme is a subset of the attractive manifold of the NCEA 
system and also of the composite system with classical adaptation. Numerical results are 
presented which show that robust orbit control of spacecraft around 433 Eros and also hov-
ering control in vicinity of Ida are accomplished despite parameter uncertainties and per-
turbing disturbance forces on the spacecraft.  
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AAS 19-645 

CHARACTERIZATION OF CANDIDATE VEHICLE STATES FOR 
XNAV SYSTEMS 

Kevin G. Lohan* and Zachary R. Putnam† 

This paper presents the framework for finding intersections of an infinite set of wave-
fronts from pulsars in 2D. The conditions for an intersection to exist are shown along 
with a numeric scheme for rapidly determining intersection feasibility. The numeric 
scheme reduces the dimensionality of the problem by one resulting in a much more com-
putationally efficient solution. Using this algorithm the candidate intersections for 3, 4, or 
5 pulsars is found for a phase tolerance between 10–3 and 10–5. It was found that to mini-
mize the number of candidate positions within a given domain it is more beneficial to in-
crease the number of pulsars observed rather than decrease the measurement uncertainty. 
An additional solution is found analytically by solving the mixed-integer math problem. 
However, this solution does not incorporate any measurement error and there is no way 
to know how many function evaluations are required to find all solutions within a do-
main.  
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AAS 19-650 

SUN SEARCH DESIGN FOR THE PSYCHE SPACECRAFT 

Daniel Cervantes,* Peter C Lai,† Alex Manka,‡  
Aditi Ratnaparkhi§ and Eric Turner** 

Psyche is a scientific mission to explore the large asteroid (16) Psyche that orbits the Sun 
at ~3 AU. Managed by JPL, it is the first instance of Maxar’s product line of geosynchro-
nous communication satellites being repurposed for deep space. This paper presents the 
design of a unique sun sensor configuration for Safe Mode of the spacecraft. It enables 
quick, robust, and propellant-efficient safing while leveraging sensors, avionics, and al-
gorithms that have extensive, flight-proven heritages.  
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AAS 19-655 

THE EVOLUTION OF DEEP SPACE NAVIGATION: 2009-2012* 

Lincoln J. Wood† 

The exploration of the planets of the solar system using robotic vehicles has been under-
way since the early 1960s. During this time the navigational capabilities employed have 
increased greatly in accuracy, as required by the scientific objectives of the missions and 
as enabled by improvements in technology. This paper is the sixth in a chronological se-
quence dealing with the evolution of deep space navigation. The time interval covered 
extends from 2009 to 2012. The paper focuses on the observational techniques that have 
been used to obtain navigational information, propellant-efficient means for modifying 
spacecraft trajectories, and the computational methods that have been employed, tracing 
their evolution through 11 planetary missions.  
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AAS 19-663 

MULTI-SENSOR MANAGEMENT UNDER INFORMATION 
CONSTRAINTS 

Kirsten Tuggle* and Maruthi Akella† 

Many emerging applications in astronautics such as space situational awareness are wit-
nessing a significant increase in the need for operating autonomously and adaptively as 
well the configurability of rapid, real-time, plug-and-play sensing systems supporting 
these operations. Even though most applications also enjoy increased computational 
power, the underlying guidance, navigation, and control tasks can quickly overwhelm the 
ability to process them as the problem complexity increases over time and/or degrees of 
freedom. The current work offers an efficient algorithm for an information-penalized 
Linear Quadratic Gaussian (LQG) problem in the absence of process noise when selec-
tions must be made among multiple sensors at each time-step. This algorithm in particu-
lar selects among sensor sets over each time-step in a manner that efficiently approxi-
mates the effects of accepting or rejecting each measurement on the bases of both the un-
derlying control problem and the specific amount of information entering the system. As 
a result, this work is suitable for a wide range of applications including those seeking to 
limit sensor use for communications as well as operational reasons.  
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AAS 19-687 

A FRAMEWORK FOR SCALING IN FILTERING AND LINEAR 
COVARIANCE ANALYSIS 

Christopher D’Souza,* Renato Zanetti† and David Woffinden‡ 

Scaling is used extensively for numerical optimization and trajectory optimization. Its use 
in the estimation community is almost nonexistent. This paper creates the framework for 
practical scaling in space navigation, in general, and linear covariance analysis, in partic-
ular.  
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AAS 19-718 

FUEL-EFFICIENT POWERED DESCENT GUIDANCE ON 
PLANETARY BODIES VIA THEORY OF FUNCTIONAL 

CONNECTIONS 1: SOLUTION OF THE EQUATIONS OF MOTION 

Enrico Schiassi,* Roberto Furfaro,† Hunter Johnston‡ and Daniele Mortari§ 

We present a new approach to solving fuel-efficient powered descent guidance problems 
using the recently developed Theory of Functional Connections. The algorithm is de-
signed to solve the non-linear Two-Point Boundary Value Problem arising from the ap-
plication of the Pontryagin minimum principle via Chebyshev polynomials expansion of 
the boundary conditions-free and iterative least-squares method. The proposed algorithm 
follows under the category of indirect methods for optimal control problems, and it is 
demonstrated to be fast and accurate, thus potentially suitable for on-board implementa-
tion to generate optimal trajectories in real-time. The focus of this paper is on the solution 
of the equations of motion for the fuel-efficient powered descent guidance via Theory of 
Functional Connections. We have succeeded in getting solutions at machine error accura-
cy with just a few iterations, but still suboptimal as the transversality condition for the 
free-time problem is not yet met.  
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AAS 19-722 

PRELIMINARY SURFACE NAVIGATION ANALYSIS FOR 
THE DRAGONFLY MISSION 

Ben Schilling,* Benjamin Villac† and Douglas Adams‡ 

On June 27, 2019, Dragonfly was selected to advance to Phase B as part of NASA’s New 
Horizons 4 program. The mission will investigate Titan’s habitability and prebiotic chem-
istry in situ. Leveraging the weak gravity and dense atmosphere of Titan, the proposed 
MMRTG-powered octocopter enables exploration of widespread locations, offering an 
immense impact on both the extent of the science campaign as well as a precedent for 
future surface exploration. This paper highlights preliminary surface navigation analysis 
conducted during the Phase A concept study, focusing on the day-in-the-life traverse 
flight navigation.  
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AAS 19-726 

CHANGO: A SOFTWARE TOOL FOR BOOST STAGE GUIDANCE 
OF THE SPACE LAUNCH SYSTEM EXPLORATION MISSION 1 

Matt Hawkins,* Naeem Ahmad† and Paul Von der Porten‡ 

The Space Launch System (SLS) Exploration Mission 1 (EM-1) test flight will use open-
loop guidance for Boost Stage (BS) flight. A table of attitude commands as a function of 
altitude, called the chi table, will be loaded onto the flight computers. The chi table will 
be generated using the measured winds on launch day by the Chi Angle Optimizer 
(CHANGO) software tool. Details of CHANGO’s design are given, including a Three 
Degrees-of-Freedom (3-DOF) simulation and a numerical minimization routine. 
CHANGO’s use in launch day operations is also described.  
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AAS 19-732 

AN ANALYSIS OF THE THEORY OF FUNCTIONAL 
CONNECTIONS SUBJECT TO INEQUALITY CONSTRAINTS 

Hunter Johnston,* Carl Leake† and Daniele Mortari‡ 

The Theory of Functional Connections is a powerful mathematical framework deriving 
constrained expressions. These expressions allow to transform constrained optimization 
problems into unconstrained problems. Until now, the Theory of Functional Connections 
framework only included equality constraints, that is, constraints defined at specific values 
of the independent variables. This paper shows how to extend this theory to problems sub-
ject to inequality constraints for one-and two-dimensions. These kind of constraints appear 
in a large variety of areas including path planning and optimal control. In addition, this pa-
per shows how to write constrained expressions for problems that have both equality and 
inequality constraints. In addition to the derivation of the constrained expression, a selected 
set of simple numerical examples are included.  
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AAS 19-734 

AN EXPLANATION AND IMPLEMENTATION OF MULTIVARIATE 
THEORY OF FUNCTIONAL CONNECTIONS VIA EXAMPLES 

Carl Leake* and Daniele Mortari† 

The Univariate Theory of Functional Connections (TFC) is a powerful mathematical 
framework that transforms constrained one-dimensional problems into unconstrained one-
dimensional problems. This reduces the whole space of functions to just the space of func-
tions satisfying the constraints. Univariate TFC has found multiple useful applications; the 
most notable is solving ordinary differential equations by least-squares. Recently, the theo-
ry has been extended to the n-dimensional case. The resultant Multivariate TFC extends the 
number of existing applications. One straightforward and important new application is in 
solving partial differential equations by least-squares. This paper explains Multivariate 
TFC in detail, and provides simple examples to clarify the theory as well as show how it 
can be implemented.  
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AAS 19-739 

LINEAR COVARIANCE ANALYSIS OF CLOSED-LOOP ATTITUDE 
DETERMINATION AND CONTROL SYSTEM OF SUB-ARCSEC 

POINTING THREE-AXES SPACECRAFT 

Divya Bhatia* 

Error analysis is indispensable, specifically for missions requiring stringent system per-
formances. In this paper linear covariance techniques are employed for the error analysis 
of the closed-loop Attitude Determination and Control System (ADCS) of a three-axes 
spacecraft of a DLR future mission named ‘InfraRed Astronomy Satellite Swarm Inter-
ferometer’ with a sub-arcsec pointing requirement. Components of its closed-loop ADCS 
includes a Multiplicative Kalman Filter which fuses the measurements from a three-axes 
rate-integrating gyroscope and a star tracker; a sliding mode controller that provides ro-
bust control in the presence of external disturbances like the gravity-gradient torque, the 
solar radiation pressure torque and a random disturbance torque; and reaction wheels for 
the spacecraft actuation. Various sources of errors include the gyro errors and the misa-
lignments, the control bias and the wheel misalignments, external disturbance torques, a 
suboptimal filter with model replacement and a sliding mode controller that utilizes a sat-
uration function. A dimensionally large state vector of the true state vector and the navi-
gation state vector is created owing to their coupled dynamics which results in a linear 
time-varying model of the entire closed-loop system. Associated closed loop covariance 
analysis equations are formulated to determine the variances of the true and the expected 
attitude estimation errors, variances of the true pointing errors of the closed-loop system 
and the variances of the required control effort. These results are verified by the nonlinear 
Monte Carlo simulations. The implementation substantiates the claim that the linear co-
variance analysis is a useful tool for fast analysis of a closed-loop ADCS. 
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AAS 19-801 

SUN-AVOIDANCE SLEW PLANNING ALGORITHM WITH 
POINTING AND ACTUATOR CONSTRAINTS 

Mohammad Ayoubi* and Junette Hsin† 

This paper presents a geometric approach for a sun (or any bright object) avoidance slew 
maneuver with pointing and actuator constraints. We assume that a gyrostat has a single 
light-sensitive payload with control-torque and reaction wheels’ angular momentum con-
straints. Furthermore, we assume that the initial and final attitudes, instrument’s line-of-
sight (LOS) vector, and sun vector are known. Then we use Pontryagin’s minimum princi-
ple (PMP) and derive the desired or target-frame quaternions, angular velocity and acceler-
ation. In the end, a Monte Carlo simulation is performed to show the viability of the pro-
posed algorithm with control-torque and angular momentum constraints.  
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AAS 19-804 

ANALYTICAL STATE TRANSITION MATRIX FOR  
DUAL-QUATERNIONS FOR SPACECRAFT POSE ESTIMATION 

Andrew M. S. Goodyear,* Puneet Singla† and David B. Spencer‡ 

An analytical expression for a state transition matrix (STM) is preferable to numerical inte-
gration of the STM for real-time estimation of spacecraft pose. With a discrete STM for a 
dual quaternion state vector, the dual quaternion error covariance can be propagated analyt-
ically between two measurement time intervals. This work provides two analytic solutions 
for a dual quaternion STM, dual quaternion error STM, and discrete process noise covari-
ance matrices. These state transition matrices are utilized to compute innovation terms in 
the update part of the EKF. Numerical simulations show that the STM agree with the nu-
merically integrated dual quaternion kinematics, and the STM are also demonstrated to be 
viable for EKF development.  
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AAS 19-809 

ADAPTIVE AND DYNAMICALLY CONSTRAINED PROCESS 
NOISE ESTIMATION FOR ORBIT DETERMINATION 

Nathan Stacey* and Simone D’Amico† 

This paper introduces two new algorithms to accurately estimate Kalman filter process 
noise online for robust orbit determination in the presence of dynamics model uncertainties. 
Common orbit determination process noise techniques, such as state noise compensation 
and dynamic model compensation, require offline tuning and a priori knowledge of the dy-
namical environment. Alternatively, the process noise covariance may be estimated 
through adaptive filtering. However, current adaptive filtering techniques often use ad hoc 
methods to ensure the estimated process noise covariance is positive semi-definite, and 
cannot accurately extrapolate over measurement outages. Furthermore, adaptive filtering 
techniques do not constrain the discrete time process noise covariance according to the un-
derlying continuous time dynamical model, and there has been limited work on adaptive 
filtering with colored process noise. To overcome these limitations, a novel approach is de-
veloped which optimally fuses state noise compensation and dynamic model compensation 
with covariance matching adaptive filtering. The adaptability of the proposed algorithms is 
a significant advantage over state noise compensation and dynamic model compensation. 
In contrast to existing adaptive filtering approaches, the new techniques are able to accu-
rately extrapolate the discrete time process noise covariance over gaps in measurements. 
Additionally, the proposed algorithms are more accurate and robust than covariance match-
ing, which is demonstrated through two case studies: an illustrative example and two 
spacecraft orbiting an asteroid.  

[View Full Paper] 

 

 

 

                                                                 
* Doctoral Candidate, Stanford University, Department of Aeronautics and Astronautics, Space Rendezvous Laborato-
ry, Durand Building, 496 Lomita Mall, Stanford, California 94305-4035, USA. 
† Assistant Professor, Stanford University, Department of Aeronautics and Astronautics, Space Rendezvous Laborato-
ry, Durand Building, 496 Lomita Mall, Stanford, California 94305-4035, USA. 

61

http://www.univelt.com/book=7812


  

AAS 19-827 

UNCERTAINTY ANALYSIS OF A GENERALIZED CONING 
ALGORITHM FOR INERTIAL NAVIGATION 

James D. Brouk* and Kyle J. DeMars† 

This paper investigates uncertainty propagation through a generalized coning algorithm 
used for inertial navigation systems. Coned measurements have often been considered un-
certain variables as the statistics for raw measurements no longer apply to a coning algo-
rithms result. Through the error analysis of a coning algorithm, two methods for mapping 
errors are introduced and an efficient and consistent propagation of state uncertainty is 
achieved, establishing that the errors in the algorithms need not be uncertain. Monte Carlo 
simulations reveal that the algorithms are shown to be consistent with typical methods of 
attitude dead-reckoning in simulations with and without coning motion.  
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AAS 19-868 

VARIATIONAL LAMBERT’S PROBLEM WITH 
UNCERTAIN DYNAMICS 

Paolo Panicucci,*† Jay McMahon,‡ Emmanuel Zenou§ and Michel Delpech** 

Lambert’s problem is a widely-known problem in astrodynamics that addresses the need of 
finding a trajectory given two position vectors and the time of flight between them. It is 
widely used in mission design and in on-line guidance algorithm in order to predict the 
needed maneuvers or the spacecraft state on the computed trajectory. Previous work has 
investigated the influence of uncertainty in the positions vectors and linearization of the 
classical Lambert’s problem for spacecraft autonomous applications. These approaches al-
low the uncertainty quantification, maneuver correction and orbit determination to be per-
formed with respect to a nominal trajectory in a perfectly-known environment. Unfortu-
nately, the increase number of missions to partially-known bodies of the Solar System, 
such as asteroids, comets and dwarf planets, requires to abandon the hypothesis of a deter-
ministic dynamical environment as the forces acting on the spacecraft are accurately quan-
tified only when the geophysical property of the body are known, thus when orbiting 
around it. This leads to the need of considering a stochastic dynamics to take into account 
uncertainties and errors introduced during mission design. 

This paper presents the variational Lambert’s problem with uncertain dynamics around a 
nominal trajectory and gather the formulas to characterize the probability density function 
and covariances of position, velocities and dynamical parameters. Then numerical simula-
tions are presented by considering several dynamics effects, such as the spherical harmon-
ics gravity, in order to validate the developed approach by comparison with Monte Carlo 
simulations. Results show good agreement between the two obtained solution. Finally, an 
operational simulation is presented to show an on-board autonomous application of the de-
veloped algorithm. In this scenario the spacecraft estimates on-board the new dynamics and 
corrects the guidance maneuvers by using the output of the variational Lambert’s problem 
and the navigation data. The corrected trajectory shows a decrease of the error with respect 
to the nominal trajectory that implies the effectiveness of the applied corrections.  

[View Full Paper] 
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AAS 19-881 

ONBOARD OPTICAL NAVIGATION FOR ASTEROID EXPLORER 
BY ASTEROID SHAPE MODEL 

Shuya Kashioka,* Genki Ohira,† Yuki Takao,‡  
Takatoshi Iyota§ and Yuichi Tsuda** 

We present an onboard navigation system for approaching and landing on an asteroid in 
deep space. The focus of this research is to apply the heuristic optical navigation method 
which is used in Hayabusa2 called GCP-NAV into an on-board processable algorithm. This 
technique is used to enable a spacecraft to touchdown correctly on a target point of a plane-
tary surface during deep space mission operations. The focus of our approach is to estimate 
the position of the spacecraft using an asteroid shape model and imagery data obtained in 
real-time during spacecraft orbiting, descent, or landing. This novel approach will make 
possible to plan missions on asteroids farther than 3 AU. As a result, the estimation result 
that fits the error of up to 1 pixel on the image coordinates was obtained. Furthermore, the 
calculation time was decreased under 1/10 compared to calculation time on CPU.  
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AAS 19-916 

COLLISION AVOIDANCE AROUND SMALL BODIES USING 
LOW-THRUST GUIDANCE 

Donald H. Kuettel III* and Jay W. McMahon† 

A recent discovery from NASA’s OSIRIS-REx mission confirmed that particles are being 
ejected from the surface of asteroid Bennu. While surprising and exciting, this discovery 
has many implications for small body missions around similar rubble-pile asteroids. One 
big question that needs to be answered is how to ensure that spacecraft in orbit around ac-
tive rubble-pile asteroids do not collide with any of these ejected particles. Following pre-
vious work, this paper examines the capabilities of several continuous, finite-burn guidance 
algorithms in their abilities to avoid collisions with ejected particles under uncertainty. 
More specifically, this paper examines Lambert guidance and ZEM/ZEV guidance to quan-
tify each algorithm’s collision avoidance performance in the small body environment.  
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AAS 19-919 

CONTROL AND SIMULATION OF A DEPLOYABLE ENTRY 
VEHICLE WITH AERODYNAMIC CONTROL SURFACES 

Benjamin W. L. Margolis,* Wendy A. Okolo,† Ben E. Nikaido,‡  
Jeffrey D. Barton§ and Sarah N. D’Souza** 

In this paper, we investigate the static stability of a deployable entry vehicle called the Lift-
ing Nano-ADEPT and design a control system to follow bank angle, angle-of-attack, and 
sideslip guidance commands. The control design, based on linear quadratic regulator opti-
mal techniques, utilizes aerodynamic control surfaces to track angle-of-attack, sideslip an-
gle, and bank angle commands. We demonstrate, using a nonlinear simulation environ-
ment, that the controller is able to accurately track step commands that may come from a 
guidance algorithm.  
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AAS 19-925 

ADDRESSING VARYING LIGHTING CONDITIONS WITH 
APPLICATION TO TERRAIN RELATIVE NAVIGATION 

Jonathan Manni,* Jay McMahon,† Nisar Ahmed‡ and Courtney Mario§ 

Correlations between camera images and pre-defined templates collected for visual-inertial 
terrain relative navigation are largely dependent upon lighting conditions. The impact of 
varying lighting conditions on the performance of template correlations between rendered 
lunar reference maps and simulated spacecraft camera images with differing lighting condi-
tions is assessed and an initial analysis into the impact of errors in spacecraft attitude esti-
mates on correlations is presented. A method for analyzing the relationships between tem-
plate correlations and lighting incidence angle and direction is introduced and initial find-
ings are presented with application to terrain relative navigation on the Moon.  
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AAS 19-610 

DYNAMICAL ISSUES IN RENDEZVOUS OPERATIONS WITH 
THIRD BODY PERTURBATION 

Giordana Bucchioni* and Mario Innocenti† 

The paper presents the complete 6-DOF set of equations of relative motion that describes 
the dynamics and the kinematic of two spacecraft in non-inertial reference frames under the 
restricted three body problem hypotheses. The work was motivated by the increasing inter-
est in missions that require the modelling of the third body perturbation to lead to an accu-
rate synthesis if Guidance Navigation and Control systems, for this reason also the linear-
ized models of the complete coupled translational-rotational dynamics are provided.  
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AAS 19-627 

HELIOSWARM: SPACE-BASED RELATIVE RANGING FOR 
A CUBESAT CLUSTER MISSION IN A 2:1 LUNAR 

RESONANT ORBIT 

Lisa Policastri* and Jim Woodburn† 

The HelioSwarm mission concept consists of a cluster design with 1 Hub and 8 Nodes co-
orbiting the Earth in a 2:1 Lunar resonant orbit. A variety of navigation constraints, as-
sumptions, and schedules were considered during design of the navigation strategy to min-
imize the need for ground-based tracking and communication. Each Node will only be ca-
pable of communicating with the Hub, with no direct connections to other nodes or the 
ground. The Hub will be tracked from the ground and perform two-way inter-satellite rang-
ing with each Node. Simulated ground and space-based tracking measurements are used to 
determine the expected orbit accuracy.  
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AAS 19-648 

CONSTELLATION PLANNING METHODS FOR 
SEQUENTIAL SPACECRAFT RENDEZVOUS USING 

MULTI-AGENT SCHEDULING 

Skylar A. Cox,* Nathan B. Stastny,† Greg Droge‡ and David K. Geller§ 

This paper addresses the RPO constellation assignment problem by developing a respon-
sive utility function for tasking a constellation of LEO satellites to several spacecraft ser-
vicing tasks. The paper develops the utility function that considers both value of servicing 
RSO spacecraft in conjunction with the associated ΔV cost. A highly-capable and opera-
tionally-relevant task allocation method, called the consensus-based bundle algorithm 
(CBBA), is leveraged for distributed processing and task allocation. This paper demon-
strates that this methodology provides a robust technique for RPO constellation manage-
ment.  
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AAS 19-651 

DESENSITIZED OPTIMAL ATTITUDE GUIDANCE FOR 
DIFFERENTIAL-DRAG RENDEZVOUS 

Andrew Harris,* Ethan Burnett and Hanspeter Schaub† 

Growing interest in fuel-constrained small satellites, large Low Earth Orbit (LEO) constel-
lations, and robustness to thruster failure has motivated the use of drag forces for orbit con-
trol. This work presents a novel method of achieving differential-drag formation flight us-
ing only attitude control and spacecraft geometry while desensitizing the control to uncer-
tainties in atmospheric properties. This work applies and extends the theory of desensitized 
optimal control to the attitude-driven differential drag problem and derives new strategies 
for coping with systems whose control sensitivities are dependent on uncertain parameters. 
These new attitude guidance strategies are compared versus traditional LQR-based strate-
gies in nominal cases and under the presence of large deviations in atmospheric density.  
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AAS 19-659 

ANALYSIS OF A PARTICLE SWARM OPTIMIZER OF  
SPACE-BASED RECEIVERS FOR GEOLOCATION USING 

HETEROGENEOUS TDOA 

David Lujan,* T. Alan Lovell† and Troy Henderson‡ 

Radio frequency localization is a passive method that can be used to geolocate a stationary 
radio transmitter. The use of two space-based receivers to accomplish the localization is 
investigated and optimized. For this method there are no common receiver locations among 
the collected measurements which defines the set of measurements to be heterogeneous. 
The purpose of this work is to optimize the receiver locations thereby optimizing their or-
bital geometry. A particle swarm optimizer is implemented to find the optima. Repeated 
simulations are performed to find a consistent set of solutions.  
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AAS 19-662 

CONSTRAINED ENERGY-OPTIMAL GUIDANCE IN RELATIVE 
MOTION VIA THEORY OF FUNCTIONAL CONNECTIONS AND 

RAPIDLY-EXPLORED RANDOM TREES 

Kristofer Drozd,* Roberto Furfaro† and Daniele Mortari‡ 

In this paper, we present a new approach to solving constrained energy-optimal guidance 
problems for spacecraft relative motion. The proposed methodology is developed on two 
fundamental blocks, i.e. solution of boundary value problems via Theory of Functional 
Connections and generation of dynamically feasible optimal trajectory via Rapidly-
explored Random Trees. The method enables fast generation of trajectories in relative mo-
tion that drive the chaser spacecraft and to the target in an energy-optimal fashion while 
satisfy state constraints arising from operational constraints.  
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AAS 19-679 

GEOMETRIC FORMATIONS USING RELATIVE ORBITAL 
ELEMENTS AND ARTIFICIAL POTENTIAL FUNCTIONS 

Sylvain Renevey* and David A. Spencer† 

In this paper, geometric relative orbit formations are established using a control algorithm 
based on relative orbital elements and artificial potential functions. Numerical simulations 
are presented to illustrate the effectiveness of the control algorithm. The first case study is 
that of a triangular lattice composed of ten spacecraft distributed onto two circular relative 
orbits. Then, the design and establishment of a thirty-seven spacecraft formation composed 
of two hexagonal lattices is presented. Finally, the algorithm is extended to a different set 
of relative orbital elements and is illustrated with the design of a helix trajectory for on-
orbit inspection.  
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AAS 19-685 

DESENSITIZED OPTIMAL SPACECRAFT RENDEZVOUS 
CONTROL WITH POORLY KNOWN GRAVITATIONAL AND SOLAR 

RADIATION PRESSURE PERTURBATIONS 

Ethan R. Burnett,* Andrew Harris† and Hanspeter Schaub‡ 

Robust rendezvous guidance is implemented in an environment with uncertain dominant 
gravitational harmonics C20 and C22 and poorly-known solar radiation pressure (SRP) ef-
fects. The rendezvous control design presumes the availability of a throttled low-thrust 
propulsion system, which can be achieved by pulsed plasma thrusters. The control mini-
mizes an augmented cost function composed of the traditional Linear Quadratic Regulator 
(LQR) terms and terms that are quadratic in system sensitivity to multiple unknown dy-
namical parameters. Results show that there is much closer agreement between the linear 
designed trajectory and true controlled trajectory using the desensitized control strategy 
than there is for LQR.  
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AAS 19-699 

APPLIED REACHABILITY ANALYSIS OF SPACECRAFT 
RENDEZVOUS WITH A TUMBLING OBJECT 

Costantinos Zagaris* and Marcello Romano† 

Rendezvous and proximity operations are an essential part of space missions and are be-
coming more complex, requiring autonomy and the use of more sophisticated, computa-
tion-based, guidance and control techniques. Implementing such algorithms in an autono-
mous system raises important questions on maneuver feasibility. In this paper, backward 
reachability analysis is conducted in order to visualize a set of initial conditions from which 
a desired rendezvous maneuver is feasible within a given amount of time and control con-
straints. A roto-translational (6-Degrees-of-Freedom (6-DOF)) model of the spacecraft 
relative motion is derived. Due to the complexity of the 6-DOF relative dynamics, reacha-
bility computations are intractable with current tools. An analysis method is proposed, us-
ing minimum-time optimal control solutions, to visualize backward reachable sets of this 
complex dynamic system. The proposed method makes the reachability analysis tractable, 
and provides valuable insight into the feasibility of rendezvous maneuvers with a tumbling 
object.  
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AAS 19-706 

CONSTRAINED MOTION ANALYSIS AND NONLINEAR OPTIMAL 
TRACKING CONTROL OF TWO-CRAFT COULOMB FORMATION 

IN ELLIPTIC CHIEF ORBITS 

M. Wasif Memon,* Morad Nazari,† Dongeun Seo‡ and Richard Prazenica‡  

In this paper, the two-craft Coulomb formation in elliptic chief orbits is studied. A nonline-
ar optimal tracking feedback control is proposed to stabilize the dynamics of Coulomb 
formation and track a reference trajectory. Due to the effects of plasma shielding, a Debye 
length model is incorporated in the nonlinear dynamics as a linear function of altitude of 
the formation’s center of mass. The control accelerations obtained using the nonlinear op-
timal tracking control are compared to the constraint accelerations obtained using the Ud-
wadia-Kalaba (U-K) equations of constrained motion. Then, the components of constraint 
accelerations are analyzed to study the maximum contribution of the Coulomb effects in 
formation. The significance of using Coulomb effects in terms of fuel costs is highlighted 
by studying the integrated thruster control effort. Numerical simulations are provided for a) 
the highly eccentric Molniya and b) the near-circular near-GEO ERS-21 orbits.  
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AAS 19-713 

MORSE-LYAPUNOV-BASED DECENTRALIZED CONSENSUS 
CONTROL OF RIGID BODY SPACECRAFT IN 

ORBITAL RELATIVE MOTION 

Eric A. Butcher* and Mohammad Maadani† 

An algorithm is proposed for almost globally asymptotically stable consensus control of 
multi-agent rigid body spacecraft in orbital relative motion using Morse-Lyapunov analysis 
in the framework of SE(3). The control objective is to stabilize the relative pose configura-
tions with velocity synchronization of the spacecraft which share their states according to a 
static communication topology in the presence of gravitational forces and torques. The 
feedback control design is conducted on the dynamic level where mass and inertia may be 
large and thus the strategy is applicable to quickly maneuvering and tumbling rigid space-
craft, and a potential-based collision avoidance scheme is also implemented.  

[View Full Paper] 
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AAS 19-764 

PRECISE RENDEZVOUS GUIDANCE IN CISLUNAR ORBIT VIA 
SURROGATE MODELLING 

Satoshi Ueda* 

This paper presents a precise rendezvous guidance technique for cislunar orbits via surro-
gate modelling. The guidance law must be tolerant of state variations due to navigation and 
control errors. Precise relative trajectory control is key to safety requirements such as colli-
sion avoidance during proximity operations. The conventional relative guidance law utiliz-
ing impulsive maneuvers such as the Clohessy-Wiltshire solution can control the position 
of a spacecraft at a specific time, whereas the spacecraft’s velocity at the same time de-
pends on estimated orbital states at the time of impulsive maneuver. Excessive guidance 
error in terms of velocity results in a wider dispersion of relative trajectories, possibly re-
sulting in less safe trajectories and may lead to stricter accuracy requirements for naviga-
tion sensors and control devices, thereby making guidance accuracy a potential cost-driving 
factor. The proposed method aims to improve guidance velocity errors by controlling guid-
ance parameters related to maneuver impulse timing and the time to target position. It uses 
surrogate modelling, which is utilized in the context of multidisciplinary system design op-
timization. A surrogate model is formulated to predict optimum guidance parameters ac-
cording to position and velocity errors in the nominal rendezvous trajectory. This paper as-
sesses rendezvous guidance in the Earth-Moon L2 near-rectilinear halo orbits as a practical 
scenario for Gateway-related missions. First, a relative guidance law suitable for cislunar 
environment is presented. Next, a surrogate model is generated by optimizing guidance pa-
rameters for distributed trajectories. Lastly, the proposed method is demonstrated through 
Monte Carlo simulations of a practical cislunar rendezvous.  
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AAS 19-810 

SECOND-ORDER SOLUTION FOR RELATIVE MOTION ON 
ECCENTRIC ORBITS IN CURVILINEAR COORDINATES 

Matthew Willis,* Kyle T. Alfriend† and Simone D’Amico‡ 

A new, second-order solution in curvilinear coordinates is introduced for the relative mo-
tion of two spacecraft on eccentric orbits. The second-order equations for unperturbed or-
bits are derived in spherical coordinates with true anomaly as the independent variable, and 
solved by the method of successive approximations. A comparison of error trends against 
eccentricity and inter-spacecraft separation is presented between the new solution and 
prominent Cartesian, curvilinear, and orbital element based solutions from the literature. 
The second-order curvilinear solution offers a thousand-fold improvement in accuracy over 
the first-order curvilinear solution, and still greater improvement over first- and second-
order rectilinear solutions when large along-track separations are present.  
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AAS 19-832 

ANALYTIC CENTER OF ILLUMINATION SOLUTIONS TO AID 
RELATIVE NAVIGATION WITH PARTIALLY RESOLVED IMAGERY 

Kevin R. Kobylka,* Jacob H. Puritz† and John A. Christian‡ 

The distance between a pair of spacecraft executing a rendezvous changes by many orders 
of magnitude during their on-orbit encounter. If optical sensors are to be used for relative 
navigation in such a scenario, it is reasonable to assume that the observed spacecraft will 
transition from an unresolved object (at long range), to a partially resolved object (at inter-
mediate range), to a fully resolved object (at close range). This work seeks to enhance 
techniques within the partially resolved regime by developing analytical solutions to relate 
the center of illumination to their geometric center for a number of common geometric 
primitives.  
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AAS 19-850 

AUTONOMOUS CHARACTERIZATION OF AN ASTEROID FROM 
A HOVERING TRAJECTORY 

Shota Takahashi* and Daniel J. Scheeres† 

Asteroid exploration missions must deal with large uncertainties in a target body’s gravity 
and shape upon rendezvous. Parameters associated with the asteroid are typically estimated 
after arrival through costly ground-based observations. In this paper, we consider autono-
mous operation of a spacecraft as a solution to reduce the cost. We focus on the period be-
tween the interplanetary and close hovering phase. The spacecraft needs to localize itself, 
estimate the asteroid’s model parameters, and travel closer to a target asteroid while proper-
ly controlling the trajectory. The goal of the paper is to investigate the information content 
of the onboard optical measurements and assess the feasibility of autonomous hovering. 
Covariance analysis is performed for two phases: distant self-localization phase and close 
mass estimation phase. It turns out the knowledge of SRP and V is essential for precise 
navigation, which suggests the benefit of high-precision onboard accelerometers.  
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AAS 19-913 

MMS EXTENDED MISSION ECLIPSE MITIGATION AND 
SOLAR WIND TURBULENCE SCIENCE CAMPAIGN 

Trevor Williams,* Eric Palmer,† Dominic Godine,† Jacob Hollister,† 
Neil Ottenstein† and Babak Vint†  

Launch window design for the Magnetospheric Multiscale (MMS) mission ensured that no 
excessive eclipses would be encountered during the prime mission. However, it was not 
physically possible to find solutions that would satisfy the eclipse constraints indefinitely: 
most extended mission years would contain 1-3 eclipses long enough to potentially damage 
either the MMS spacecraft or its scientific instruments. It was found that raising apogee 
radius from 25 to 29.34 Earth radii moderated the peak eclipses significantly at relatively 
low fuel cost. These maneuvers were performed recently, and a science campaign to study 
turbulence in the solar wind piggy-backed onto it.  
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AAS 19-920 

SENSOR SELECTION STRATEGIES FOR SATELLITE SWARM 
COLLABORATIVE LOCALIZATION 

William A. Bezouska*† and David A. Barnhart‡ 

A closely spaced group of collaborative satellites can fuse relative position and orientation 
measurements collected between individual team members to estimate the state of the en-
tire swarm. Intelligently selecting only a subset of available measurements can reduce 
power and computation requirements while potentially avoiding poorly performing sensor 
configurations. This paper presents a greedy sensor selection strategy to reduce the number 
of measurements processed at each timestep. Performance of a Multiplicative Extended 
Kalman Filter using this reduced set is compared to randomly selecting the same number of 
sensors. We show through simulation on synthetic data as well as cooperative vision-based 
pose estimation using rendered images that this strategy can improve estimation perfor-
mance.  
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AAS 19-941 

LAUNCH, TRANSPORT, AGGREGATION, AND ASSEMBLY OF 
AN IN-SPACE ASSEMBLED TELESCOPE 

Bo J. Naasz* 

This paper presents a preliminary concept of operations for launch, aggregation, and as-
sembly of a large space telescope, based on work performed during the National Aero-
nautics and Space Administration (NASA) Science Mission Directorate (SMD) In-Space 
Assembled Telescope (iSAT) study. We also present observations on the assembly location 
trade, notional telescope cargo launch manifests, and results of a parametric launch and de-
livery cost study for several observatory sizes, and evaluating several options in the aggre-
gation architecture trade space, including: 1) assembly at Earth-Moon L2 (EM-L2) or Sun-
Earth L2 (SE-L2); 2) transfer orbit types (direct, lunar flyby, or manifold); 3) re-use of 
launch vehicle first stage; 4) use of a tug/tender or disposable cargo delivery vehicle. This 
parametric study allows us to make some observations about when, assuming there is no 
other customer, a re-usable space tug becomes cost effective as part of the ISAT architec-
ture.  
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AAS 19-637 

DESIGN AND CONTROL OF SPACECRAFT TRAJECTORIES IN 
THE FULL RESTRICTED THREE BODY PROBLEM 

Isabelle Jean,* Arun K. Misra† and Alfred Ng‡ 

Asteroid missions are now an important component of space exploration and binary as-
teroids comprise approximately 16% the Near Earth Asteroids (NEA) population. This 
fact, combined with the planned mission to binary asteroid 65803 Didymos has generated 
a lot of interest in the study of spacecraft dynamics in the vicinity of binary asteroids. The 
combination of the effect of the irregular shape and the rotation of the primary bodies 
makes them not only non-linear, but also non-autonomous systems. The dynamics of a 
spacecraft in a binary environment with those characteristics is known as the Full Re-
stricted Three Body Problem (FRTBP). This study develops a technique to design refer-
ence trajectories in the FRTBP using a fourth-order gravitational potential model of the 
two primary bodies. The rotation of the primary bodies, their elliptical mutual motion and 
the solar radiation pressure are also included in the model, which makes this study 
unique. It then compares the control effort required when these reference trajectories are 
used with that required when reference trajectories built with simpler models are used. 
The goal is to study how the choice of the model used to compute reference trajectories 
influences the control effort required to keep the spacecraft close to them.  
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AAS 19-681 

THE LONG-TERM FORECAST OF STATION VIEW PERIODS FOR 
ELLIPTICAL ORBITS* 

Andrew J. Graven† and Martin W. Lo‡ 

In a previous paper, using ergodic theory, Lo1 derived a simple definite integral that pro-
vided an estimate of the view periods of ground stations to satellites. This assumes the 
satellites are in circular orbits with non-repeating ground tracks under linear J2 perturba-
tions. The novel feature is that this is done without the propagation of the trajectory by 
employing ergodic theory. This accelerated the telecommunications mission design and 
analysis by several orders of magnitude and greatly simplified the process. In this paper, 
we extend the view period integral to elliptical orbits.  
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AAS 19-696 

HIGH-ENERGY LUNAR CAPTURE 
VIA LOW-THRUST DYNAMICAL STRUCTURES 

Andrew D. Cox,* Kathleen C. Howell† and David C. Folta‡ 

Current and future spacecraft will leverage low-thrust propulsion to navigate from high-
energy transfer trajectories to low-energy orbits near the Moon. Due to the long burn du-
rations required for such energy changes, identifying suitable low-thrust arcs remains a 
design challenge. Periapse maps are employed to explore the dynamics of low-thrust, en-
ergy-optimal arcs in the lunar vicinity. Dynamical structures that separate transit and cap-
tured motion on these maps are identified and leveraged to construct preliminary low-
thrust trajectory designs.  
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AAS 19-717 

OSIRIS-REX NAVIGATION SMALL FORCE MODELS 

Jeroen L. Geeraert,* Jason M. Leonard,* Patrick W. Kenneally,† 
Peter G. Antreasian,* Michael C. Moreau‡ and Dante S. Lauretta§ 

The Navigation Campaign of the NASA OSIRIS-REx mission consists of three phases: 
the Approach phase, Preliminary Survey phase, and the Orbital A phase. These phases 
spanned from August 2018 until February 28, 2019. The OSIRISREx spacecraft arrived 
at asteroid (101955) Bennu on December 3rd, 2018 thereby initiating the Preliminary 
Survey phase consisting of five 7-km altitude flybys of the asteroid. Orbit insertion fol-
lowed on December 31st, 2018 commencing the Orbital A phase whereby the space-
craft’s average frozen orbit radius was less than 2 km. In this paper the small forces are 
presented that govern the spacecraft dynamics near the asteroid for the Navigation Cam-
paign. These small forces include: solar radiation pressure, spacecraft thermal re-
radiation, the antenna and LIDAR radiation pressure, and trending from desaturation ma-
neuvers (desats). Extensive work on modeling these forces has enabled the navigation 
performance to exceed expectations and has reduced the stochastic accelerations below 1 
x 10–12 km/s2 resulting in smaller trajectory predicted errors, essential for science plan-
ning of the mission.  
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AAS 19-723 

FREQUENCY STRUCTURE OF THE NRHO FAMILY IN 
THE EARTH-MOON SYSTEM 

David Lujan* and Daniel J. Scheeres† 

A method for computing the frequencies and winding numbers of the center manifolds 
for Halo orbits is presented. This method defines a coordinate system in the center mani-
fold to track a particle’s position under the action of linear dynamics of the circular re-
stricted three-body problem. The coordinate system is constructed using information 
about the left and right eigenvectors of the associated monodromy matrix of a Halo orbit. 
The frequencies and winding numbers presented here are for the Southern L2 Halo orbit 
family in the Earth-Moon system, however this method can be applied to periodic orbits 
in other three-body systems.  

[View Full Paper] 
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AAS 19-724 

TRANSFER TRAJECTORY OPTIONS FOR  
SERVICING SUN-EARTH-MOON LIBRATION POINT MISSIONS 

David C. Folta* and Cassandra Webster† 

Future missions to the Sun-Earth Libration L1 and L2 regions will require scheduled ser-
vicing to maintain hardware and replenish consumables. While there have been state-
ments made by various NASA programs regarding servicing of vehicles at these locations 
or in Cis-lunar space, a practical transfer study has not been extensively investigated in 
an operational fashion to determine the impacts of navigation and maneuver errors. This 
investigation uses dynamical systems and operational models to design transfer trajecto-
ries between the Sun-Earth Libration region (QuasiHalo orbit) and the Earth-Moon vicin-
ity (Distant Retrograde Orbit, QuasiHalo Orbit, Halo Orbit, and Near Rectilinear Halo 
Orbit). We address the total ΔV cost of transfers and operational considerations between 
each pair of locations using a Monte Carlo analysis.  
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AAS 19-728 

ACCESSING HIGHLY OUT-OF-ECLIPTIC SCIENCE ORBITS VIA 
LOW-ENERGY, LOW-THRUST TRANSPORT MECHANISMS 

Jeffrey Stuart,* Rodney L. Anderson,* Christopher Sullivan† 
and Natasha Bosanac†  

Several mission concepts entail the placement of a spacecraft into a high inclination orbit 
with respect to the ecliptic plane. Among these mission concepts are solar observatories 
targeting the polar regions of the Sun or spacecraft seeking an external vantage point on 
the zodiacal dust cloud of our solar system. In this investigation, techniques for low-
thrust and low-energy trajectory design will be integrated into a cohesive framework to 
access these highly out-of-ecliptic science orbits. The focus of this investigation will be 
on spacecraft conforming to a SmallSat form-factor, enabling opportunistic science as 
secondary payloads or via smaller launch vehicles.  

[View Full Paper] 
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AAS 19-740 

SURVEY OF BALLISTIC LUNAR TRANSFERS TO 
NEAR RECTILINEAR HALO ORBIT 

Nathan L. Parrish,* Ethan Kayser,† Shreya Udupa,† Jeffrey S. Parker,‡ 
Bradley W. Cheetham§ and Diane C. Davis** 

This paper presents a survey of ballistic lunar transfer (BLT) trajectories from Earth 
launch to insertion into a near rectilinear halo orbit (NRHO). Results are described from a 
detailed set of related mission design studies: the evolution over time of families with and 
without an outbound lunar flyby; analysis of eclipses; analysis of the �V requirements of 
changing arrival time to rendezvous; and description of the trade space for time of flight 
vs deterministic �V. An ephemeris model is used throughout. These analyses are pre-
sented in order to inform future missions to NRHOs.  
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AAS 19-744 

ENABLING BROAD ENERGY RANGE COMPUTATIONS AT 
LIBRATION POINTS USING ISOLATING NEIGHBORHOODS* 

Rodney L. Anderson,† Robert W. Easton‡ and Martin W. Lo†  

Isolating blocks have previously been used for computing complete sets of transit trajec-
tories traveling through the L1 and L2 libration point gateways in the circular restricted 
three-body problem. They have also been used to compute close approximations to the 
hyperbolic invariant sets around the libration points and their associated invariant mani-
folds. Constructing typical isolating block boundaries can be challenging, and the energy 
range for which these isolating blocks may be computed is limited. The use of isolating 
neighborhoods is introduced here to provide a theoretically rigorous approach for these 
computations that eliminates the difficulties involved in constructing isolating block 
boundaries while expanding the applicable energy range.  
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AAS 19-769 

LINKING LOW- TO HIGH-ENERGY DYNAMICS OF 
INVARIANT MANIFOLD TUBES, TRANSIT ORBITS, 

AND SINGULAR COLLISION ORBITS 

Kenta Oshima* 

The first part of the present paper reveals interplays among invariant manifolds emanat-
ing from planar Lyapunov orbits around the three collinear Lagrange points L1, L2, and L3 
for high energies. Once the energetically forbidden region vanishes, the invariant mani-
folds together form closed separatrices bounding transit orbits in the phase space, deviat-
ing from the low-energy picture of invariant manifold tubes. Though the qualitatively dif-
ferent behavior of invariant manifolds emerges for high energies, associated transit orbits 
possess a common feature generalized from that of low-energy transit orbits. The second 
part extends our previous proposal of using singular collision orbits associated with the 
secondary to find trajectories reaching the vicinity of the secondary to low energies. Sta-
tistical analyses indicate that singular collision orbits are useful to find such transfer tra-
jectories except for the very-low-energy regime. These results are numerically obtained 
in the Earth-Moon and Sun-Jupiter planar circular restricted three-body problems.  
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AAS 19-785 

ASTEROID DEFLECTION WITH ACTIVE BOULDER REMOVAL 

Daniel N. Brack* and Jay W. McMahon† 

A method of asteroid deflection is presented and examined. This method, dubbed mass 
driver deflection, uses small discrete launches of masses off an asteroid to prevent its col-
lision with Earth. By using material from the asteroid itself, such as boulders or regolith 
deposits, mass driver deflection substantially reduces the required mass of the deflection 
system. The analysis in the paper seeks to optimize the deflection efforts, while minimiz-
ing unwanted effects on the deflected asteroid’s state, both rotational and orbital. The re-
sults show that deflection is possible in time frames of several years in a variety of sce-
narios and that the deflection effects on the asteroid behavior do not pose a risk of dis-
rupting the asteroid in a catastrophic way.  
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AAS 19-798 

STABILITY OF HIGHLY INCLINED ORBITS AROUND THE 
ASTEROID (153591) 2001 SN263 

Diogo M. Sanchez* and Antonio F.B.A. Prado† 

In this work perturbation maps are used to measure the stability of highly inclined orbits 
around the triple asteroid 2001 SN263, target of the Brazilian ASTER mission. The per-
turbation maps also provide the delta-v required to keep a spacecraft as close as possible 
to a reference orbit through orbital maneuvers. In our case the reference orbit is a Kep-
lerian orbit. However, the reference orbit can be any, depending on the objectives of the 
mission. We compare the orbital stability of the spacecraft with three values area-to-mass 
ratio, to show the effect of the solar radiation pressure on the dynamical structure of the 
system. The results of this work can be used for the planning of the ASTER mission and 
for the planning of any space mission.  
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AAS 19-808 

DYNAMICAL STRUCTURES NEARBY NRHOS WITH 
APPLICATIONS IN CISLUNAR SPACE 

Emily M. Zimovan-Spreen* and Kathleen C. Howell† 

The development of a methodology to move through cislunar space along fundamental 
dynamical paths is relevant to NASA’s cislunar transportation network goals. To enable 
an informed design approach for transfer trajectories departing from or arriving at a Near 
Rectilinear Halo Orbit (NRHO), higher-period orbits that bifurcate from the NRHO re-
gion of the halo orbit family are combined with other known structures, such as Lagrange 
point and resonant orbits, in the Earth-Moon neighborhood. As a consequence of this de-
sign strategy, novel impulsive transfer options between NRHOs and distant retrograde 
orbits that possess predictable geometries are constructed.  
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AAS 19-814 

TRANSFERS FROM GTO TO SUN-EARTH LIBRATION ORBITS 

Juan A. Ojeda Romero* and Kathleen C. Howell† 

Rideshares increase launch capabilities and decrease the cost for satellite manufacturers. 
However, the range of orbits available for secondary payloads is dependent on launch 
constraints for the primary. Additionally, communications constraints and limited propel-
lant options must be incorporated in preliminary mission design for secondary payloads. 
Ridesharing opportunities are now available for orbit destinations beyond LEO. In this 
investigation, transfers from GTOs to Sun-Earth libration point orbits are generated using 
stable manifold transfers and Poincaré maps.  
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AAS 19-821 

KOOPMAN OPERATOR THEORY APPLIED TO 
THE MOTION OF SATELLITES 

Richard Linares* 

This paper investigates the application of Koopman Operator (KO) theory to Astrody-
namics. The field of astrodynamics has a rich history in motivating the development of 
techniques in dynamical systems theory, going back to the revolutionary work of Poinca-
ré. Recently, the KO has emerged as a promising alternative to the geometric prospective 
provided by Poincaré, where the KO formulates the analysis and dynamical systems in 
terms of observables. This paper investigates this observable based prospective for chal-
lenges in the field of astrodynamics. Additionally, new advancements in data-driven 
computational approaches have led to new ways of approximating the KO and this work 
investigates these computational tools for computing the eigenfunctions of the KO.  
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AAS 19-825 

OBSERVABILITY AND ESTIMABILITY ANALYSIS OF 
THE ORBIT PROBLEM 

Alex M. Friedman* and Carolin Frueh† 

With easier access to space, the challenge of tracking the resident space object (RSO) 
population becomes even more difficult. The connection of observability and the Kalman 
filter is explored for facing this RSO tracking challenge. Often, observability is computed 
without state and measurement uncertainties, but many stochastic observability methods 
have been developed. In addition, methods for evaluating estimation performance, called 
estimability, are useful to study alongside observability. A review of stochastic observa-
bility and estimability methods for the orbit problem is conducted. A consider filter ap-
proach utilizing specific observability and estimability methods is developed for im-
proved RSO propagation and identification.  
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AAS 19-855 

CANONICAL TRANSFORMATIONS VIA A SPARSE 
APPROXIMATION-BASED COLLOCATION METHOD FOR 

DYNAMICAL SYSTEMS 

Roshan T. Eapen,* Manoranjan Majji,† Kyle T. Alfriend‡ and Puneet Singla§ 

Semi-analytical approaches to solve the Hamilton-Jacobi Partial Differential Equation 
that governs the transformation of coordinates to rectify the motion of a dynamical sys-
tem are proposed in this paper. It is shown that recent advances in sparse approximation 
can be utilized to develop a collocation method to approximate the generating function 
for which closed-form solution to the HJ equation may not be obtained. By utilizing a 
family of trajectories in the domain of the relevant phase volume, the sparse approxima-
tion problem for the coefficients of the generating function is formulated and solved effi-
ciently, for arbitrary choice of basis function sets.  
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AAS 19-611 

LOW THRUST VARIABLE SPECIFIC IMPULSE FUEL-OPTIMAL 
TRANSFERS BETWEEN PLANETARY PARKING ORBITS 

Padmanabha Prasanna Simha* and R. V. Ramanan† 

Optimizing low thrust transfers between Earth-Mars parking orbits is a challenging prob-
lem due to the large number of revolutions that the spacecraft has to perform during plan-
etary escape and capture. A strategy has been arrived at to obtain near optimal solutions 
without multiple shooting or any approximations to handle the planet-centric revolutions. 
A power limited, variable specific impulse, constant efficiency thruster operating be-
tween minimum and maximum specific impulse bounds is considered. The optimal con-
trol law is obtained by the application of the Pontryagin’s minimum principle and the 
Karush-Kuhn-Tucker conditions to enforce power and specific impulse constraints. The 
resulting two point boundary value problem has been solved using differential evolution, 
a search based global optimization technique without the need for homotopy. A three 
mode discontinuous control law is obtained which allows for coasting. This leads to fuel-
optimal interplanetary transfers with thrusters having a much narrower range of operating 
specific impulses in comparison to results currently available in literature.  
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AAS 19-614 

REFINING LUCY MISSION DELTA-V DURING SPACECRAFT 
DESIGN USING TRAJECTORY OPTIMIZATION WITHIN HIGH-

FIDELITY MONTE CARLO MANEUVER ANALYSIS 

James V. McAdams,* Jeremy M. Knittel,* Kenneth E. Williams,*  
Jacob A. Englander,† Donald H. Ellison,† Dale R. Stanbridge,*  

Brian Sutter‡ and Kevin Berry†  

Recent advances linking medium-fidelity trajectory optimization and high-fidelity trajec-
tory propagation/maneuver design software with Monte Carlo maneuver analysis and 
parallel processing enabled realistic statistical delta-V estimation well before launch. 
Completing this high-confidence, refined statistical maneuver analysis early enabled re-
lease of excess delta-V margin for increased dry mass margin for the Lucy Jupiter Trojan 
flyby mission. By 3.3 years before launch, 16 of 34 TCMs had 1000 re-optimized trajec-
tory design samples, yielding tens of m/s lower 99%-probability delta-V versus targeting 
maneuvers to one optimal trajectory. One year later, 1000 re-optimized samples of all 
deterministic maneuvers and subsequent flybys further lowered estimated delta-V.  
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AAS 19-618 

END TO END OPTIMIZATION OF A MARS HYBRID 
TRANSPORTATION ARCHITECTURE 

Min Qu,* Raymond G. Merrill† and Patrick Chai‡ 

NASA’s Mars Study Capability Team (MSCT) is developing a reusable Mars hybrid 
transportation architecture in which both chemical and solar electric propulsion systems 
are used in a single vehicle design to send crew and cargo to Mars. This paper presents a 
new integrated framework that combines Earth de-parture/arrival, heliocentric trajectory, 
Mars orbit reorientation, and vehicle sizing into a single environment and solves the en-
tire mission from beginning to end in an effort to find a globally optimized solution for 
the hybrid architecture.  
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AAS 19-633 

OPTIMIZATION OF THE LUCY INTERPLANETARY TRAJECTORY 
VIA TWO-POINT DIRECT SHOOTING 

Jacob A. Englander,* Donald H. Ellison,† Ken Williams,‡  
James McAdams,§ Jeremy M. Knittel,** Brian Sutter,††  
Chelsea Welch,‡‡ Dale Stanbridge§§ and Kevin Berry*** 

Lucy is NASA’s next Discovery-class mission and will explore the Trojan asteroids in 
the Sun-Jupiter L4 and L5 regions. This paper details the design of Lucy’s interplanetary 
trajectory using a two-point direct shooting transcription, nonlinear programming, and 
monotonic basin hopping. These techniques are implemented in the Evolutionary Mission 
Trajectory Generator (EMTG), a trajectory optimization tool developed at NASA God-
dard Space Flight Center. We present applications to the baseline trajectory design, Mon-
te Carlo analysis, and operations.  
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AAS 19-661 

HIGH-FIDELITY MULTIPLE-FLYBY TRAJECTORY OPTIMIZATION 
USING MULTIPLE SHOOTING 

Donald H. Ellison* and Jacob A. Englander† 

Rendering a complex spacecraft trajectory in high fidelity can be an expensive endeavor, 
both computationally and from a human time/cost standpoint. However, in many cases, a 
low-fidelity trajectory that reasonably approximates a high-fidelity counterpart is much 
easier to obtain. Thus, it is important to have an efficient process for converting a trajec-
tory from lower-fidelity model to high fidelity. We present a method for converting low-
fidelity trajectories into high fidelity that relies on multiple shooting, nonlinear program-
ming, and numerical integration. The procedure converts any zero-radius sphere-of-
influence gravity-assist events to fully integrated flyby events. Several numerical exam-
ples are presented that showcase the flexibility of the high-fidelity rendering process 
across multiple mission types and flight regimes.  
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AAS 19-675 

THEORY OF FUNCTIONAL CONNECTIONS APPLIED TO 
NONLINEAR PROGRAMMING UNDER EQUALITY CONSTRAINTS 

Daniele Mortari,* Tina Mai†‡ and Yalchin Efendiev§ 

This paper introduces an efficient approach to solve quadratic programming problems 
subject to equality constraints via the Theory of Functional Connections. This is done 
without using the traditional Lagrange multipliers approach, and the solution is provided 
in closed-form. Two distinct constrained expressions (satisfying the equality constraints) 
are introduced. The unknown vector optimization variable is then the free vector g, intro-
duced by the Theory of Functional Connections, to derive constrained expressions. The 
solution to the general nonlinear programming problem is obtained by the Newton’s 
method in optimization, and each iteration involves the second-order Taylor approxima-
tion, starting from an initial vector x(0) which is a solution of the equality constraint. To 
solve the quadratic programming problems, we not only introduce the new approach but 
also provide a numerical accuracy and speed comparisons with respect to MATLAB’s 
quadprog. To handle the nonlinear programming problem using the Theory of Functional 
Connections, a sketch of convergence analysis of the proposed approach is provided.  
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AAS 19-686 

CONSTRUCTING A SET OF MOTION PRIMITIVES IN THE 
CIRCULAR RESTRICTED THREE-BODY PROBLEM VIA 

CLUSTERING 

Thomas R. Smith* and Natasha Bosanac† 

To reduce the complexity of trajectory design in chaotic dynamical environments, data 
analysis techniques support the representation of a large and diverse solution space via a 
fundamental set of governing structures. Clustering is a data mining technique used to 
summarize a dataset by uncovering its underlying structures. In this paper, a variety of 
commonly used clustering algorithms are explored to construct a set of motion primitives 
that summarize a family of periodic orbits in the Circular Restricted Three-Body Problem 
(CR3BP). An overview of common clustering algorithms is provided and the motion 
primitive construction process for trajectories in a multi-body system is outlined. The im-
pact of various clustering algorithms and feature vector definitions on the construction of 
motion primitives in the CR3BP is evaluated for the family of Distant Prograde Orbits 
(DPOs) in the Earth-Moon system.  
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AAS 19-688 

OPTIMAL LOW-THRUST GRAVITY PERTURBED ORBIT 
TRANSFERS WITH SHADOW CONSTRAINTS 

Robyn Woollands*† and Ehsan Taheri‡ 

We present a new methodology to incorporate shadow- and time-triggered constraints 
within the indirect optimization methods to solve low-thrust fuel-optimal orbit transfer 
problems. Such constraints could represent, for instance, zero thrusting during an eclipse 
or a time interval during which the thruster has to be shut down during a mission science 
phase for data collection or communication purposes. Incorporation of the constraints is 
achieved in a straightforward manner through a hyperbolic tangent smoothing (HTS) 
method, which reduces the problem to a two-point boundary-value problem (TPBVP). A 
unique feature of the presented construct is that non-smooth components in the dynamics 
(e.g., engine throttle input and shadow- or time-triggered constraints) are all approximat-
ed by smooth representations. As a consequence of smoothing, the domain of conver-
gence of the standard single-shooting methods used for solving the ensuing TPBVPs is 
drastically enlarged. The utility of the method is demonstrated through a fixed-time ren-
dezvous-type maneuver from a geostationary transfer orbit to a geostationary equatorial 
orbit, where a high-fidelity spherical harmonic gravity model of the Earth is used. More-
over, the system dynamics are propagated with the Picard-Chebyshev numerical integra-
tor and the TPBVP is solved using the method of particular solutions. The proposed con-
struct affords several avenues for computational speedup that has appealing numerical 
features making them suitable for trajectory optimization using high-fidelity models.  
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AAS 19-690 

LAUNCH OPPORTUNITY ANALYSIS OF GEO TRANSFER WITH 
HIGH INCLINATION USING LUNAR GRAVITY ASSIST 

Su-Jin Choi,* John Carrico,† Mike Loucks,‡ Hoonhee Lee§ and Se-Jin Kwon** 

There is a possibility to launch a GEO mission at Naro space center even though Naro 
space center is located in mid-latitude in the northern hemisphere. When launched from 
Naro space center, the inclination after separation is 80°. Therefore, lunar gravity assist is 
required for a GEO transfer to avoid excessive plane change maneuvers. Two launch date 
intervals for a month and short/long coast options are considered. Three perigee maneu-
vers to raise GTO to lunar altitude and additional three perigee maneuvers after fly-by for 
GEO insertions are planned. Each option provides a launch opportunity of 6 days with 
less than 20° Earth inclination. BdotR, BdotT at fly-by and apogee altitude, orbital period 
after fly-by and total Delta-V are obtained in all options. Simulation results show that 
lower apogee altitude after fly-by is required to lower Delta-V. Two short coast options 
have the maximum and minimum Delta-V in all options. For one short option (Short-
Date1), the required Delta-V is 1760 m/s with small Earth inclination. Therefore, this tra-
jectory can be an alternative to overcome the need for a large plane change and the re-
quired Delta-V can be less than a general GEO transfer if the initial apogee altitude is 
higher than 65,000 km.  
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AAS 19-694 

THROUGH THE LOOKING GLASS: MISSION DESIGN USING 
INTERACTIVE AND IMMERSIVE VISUALIZATION 

ENVIRONMENTS* 

Jeffrey Stuart,† Amos Byon,‡ Alex Menzies,† Try Lam,* Brent Buffington,* 
and Sonia Hernandez*  

Mission design and trajectory analysis is an intensive process requiring advanced compu-
tational resources, expert human intuition, and many successive human-in-the-loop itera-
tions to converge on acceptable trajectory designs. One approach to alleviate this burden 
is through the judicious application of visually interactive environments that allow intui-
tive human assessment and real-time updates as options are explored. In this investigation 
we will specifically focus on the challenges presented in the early- to mid-development 
phases of a mission, where these phases are characterized by (sometimes rapid) shifts in 
mission objectives, spacecraft architecture, and concept of operations as trade spaces are 
explored.  
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AAS 19-701 

A TIME-DEPENDENT TSP FORMULATION FOR THE DESIGN OF 
AN ACTIVE DEBRIS REMOVAL MISSION USING 

SIMULATED ANNEALING 

Lorenzo Federici,* Alessandro Zavoli† and Guido Colasurdo‡ 

This paper proposes a formulation of the Active Debris Removal (ADR) Mission Design 
problem as a modified Time-Dependent Traveling Salesman Problem (TDTSP). The 
TDTSP is a well-known combinatorial optimization problem, whose solution is the 
cheapest monocyclic tour connecting a number of non-stationary cities in a map. The 
problem is tackled with an optimization procedure based on Simulated Annealing, that 
efficiently exploits a natural encoding and a careful choice of mutation operators. The 
developed algorithm is used to simultaneously optimize the targets sequence and the ren-
dezvous epochs of an impulsive ADR mission. Numerical results are presented for sets 
comprising up to 20 targets.  
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AAS 19-705 

LIBRATION ORBIT ECLIPSE AVOIDANCE MANEUVER STUDY 
FOR THE JAMES WEBB SPACE TELESCOPE MISSION 

Wayne Yu* and Karen Richon† 

Mission analysis of libration orbit trajectories at Sun-Earth/Moon L2 typically includes 
predictions of lunar and Earth eclipses during the mission life-time. The NASA James 
Webb Space Telescope (JWST) trajectory, by design, avoids these eclipses by pruning its 
launch window. In an off-nominal scenario where an eclipse is predicted, a maneuver 
strategy is needed. In this paper, trade studies are examined for JWST that characterize 
the burn magnitude, location, and epochs of multiple maneuver plans to avoid an eclipse. 
The results enable analysts to explore the space of feasible maneuver strategies during 
routine operations.  
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AAS 19-719 

COPERNICUS 5.0: LATEST ADVANCES IN JSC’S SPACECRAFT 
TRAJECTORY OPTIMIZATION AND DESIGN SYSTEM 

Jacob Williams,* Anubhav H. Kamath,† Randy A. Eckman,‡  
Gerald L. Condon,§ Ravishankar Mathur** and Diane C. Davis†† 

This paper describes the latest upgrades that have been made to JSC’s Copernicus trajec-
tory optimization program for the upcoming 5.0 release. Copernicus has undergone sig-
nificant refactoring in recent years in order to make the tool more powerful, versatile, and 
user-friendly. The 5.0 release includes a new Python-based GUI and scripting interface, 
new 3D graphics upgrades, and a host of architectural modifications and new features. 
The implementation of the new architecture and its capabilities are discussed, including 
examples of how some of the new features can be used to solve different trajectory prob-
lems.  
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AAS 19-733 

RAPID EVALUATION OF LOW-THRUST TRANSFERS FROM 
ELLIPTICAL ORBITS TO GEOSTATIONARY ORBIT 

Mason J. Kelchner* and Craig A. Kluever† 

Low-thrust orbit transfers to geostationary-equatorial orbit (GEO) will likely use a com-
bination of chemical- and electrical-propulsion stages to strike a balance between transit 
time, minimal power degradation, and delivered payload mass. Therefore, mission de-
signers need a method for rapidly evaluating low-thrust transfers to GEO. Relying on full 
trajectory-optimization programs for preliminary studies is not a desirable option due the 
time associated with optimizing multiple trajectories. This paper develops an algorithm 
that rapidly determines the v for a low-thrust transfer from an arbitrary elliptical orbit to 
GEO. Transfer time to GEO is accurately computed by incorporating thrust interruption 
(due to Earth-shadow effects) and power degradation (due to passage through the Van 
Allen belts). The method relies on curve-fits of optimal transfers and simple polynomial 
expressions for the orbital-element histories. Hence, the technique is fast and does not 
require numerical integration of the powered equations of motion or a numerical search. 
We demonstrate our method by presenting several transfers to GEO and comparing the 
performance metrics with the associated optimal transfers.  
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AAS 19-745 

ENDGAME DESIGN FOR EUROPA LANDER:  
GANYMEDE TO EUROPA APPROACH* 

Rodney L. Anderson,† Stefano Campagnola,† Dayung Koh,†  
Timothy P. McElrath† and Robyn M. Woollands†  

The endgame scenario that was explored in this analysis consisted of the part of the tra-
jectory starting at the last Ganymede flyby and ending at the final Europa approach. The 
basic design components included computing the phasing for the final Ganymede en-
counter, computing the required intermediate Europa flybys, determining the required 
maneuvers to transition between the intermediate resonances, and interfacing with a 
computed portal prior to the final approach. The JPL optimization software, COSMIC, 
was used in the ephemeris model to optimize solutions computed in the circular restricted 
three-body problem and compute bounds on the attainable set of solutions by sweeping 
various design parameters.  
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AAS 19-749 

SPACECRAFT MANEUVER STRATEGY OPTIMIZATION FOR 
DETECTION AVOIDANCE USING REACHABILITY SETS 

Connor N. Clary,* Jason A. Reiter† and David B. Spencer‡ 

The Conjugate Unscented Transform allows for an easy calculation of reachability sets 
with a minimal number of full model propagations. The computation time savings that 
comes with this method encourages implementation of reachability sets in more complex 
problems. Spacecraft maneuver planning for detection avoidance is unique in that all ob-
jectives may not be met by moving some minimum distance from the nominal orbit. 
Combining ground-track manipulation and propellant-use in reachability-based multi-
objective optimization gives planners a unique perspective when designing detection 
avoidance maneuvers. Taking into account multiple maneuvers provides an advantageous 
opportunity to optimize a complete maneuver strategy for detection avoidance.  
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AAS 19-750 

OPTIMIZATION IN SPACE-BASED PURSUIT-EVASION GAMES 
THROUGH COMPETITIVE COEVOLUTION 

Jason A. Reiter* and David B. Spencer† 

Optimization in space-based pursuit-evasion games is often computationally cost prohibi-
tive given the size of the state and action spaces available to both players. Competitive 
coevolution can be used to augment the optimization process in a manner that results in 
dynamic search spaces. In competitive coevolution, the two players compete directly with 
each other and reciprocally drive one another to increasing levels of performance and 
complexity. This is accomplished by gradually increasing the size and complexity of the 
strategies available to both players. Using coevolution provides significant computational 
cost savings compared to traditional optimization methods while ensuring a globally op-
timal result.  
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AAS 19-758 

MISSION FEASIBILITY FROM TRAJECTORY OPTIMIZATION AND 
THE STATE OF SPACE SYSTEMS RESEARCH AT THE 

UNIVERSITY OF AUCKLAND 

Darcey R. Graham,* Nicholas J. Rattenbury* and John E. Cater† 

New Zealand has very recently become a space-faring nation, and so it is at an exciting 
time deciding where its interests lie. The current state of space systems research at the 
University of Auckland, where focus is on inexpensive small satellites, is presented with 
methods to assess the feasibility of future missions based on trajectory optimization. The 
low-thrust and low- v capabilities of both old and novel electric propulsion systems 
place significant limitations on future missions, so limiting v by minimizing fuel re-
quirements will be the objective of trajectory optimization. Different methods of trajecto-
ry optimization are compared.  
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AAS 19-763 

A CONVEX OPTIMIZATION APPROACH FOR FINITE-THRUST 
TIME-CONSTRAINED COOPERATIVE RENDEZVOUS 

Boris Benedikter,* Alessandro Zavoli† and Guido Colasurdo‡ 

This paper presents a convex approach to the optimization of a cooperative rendezvous, 
that is, the problem of two distant spacecraft that simultaneously operate to get closer. 
Convex programming guarantees convergence towards the optimal solution in a limited, 
short, time by using highly efficient numerical algorithms. A combination of lossless and 
successive convexification techniques is adopted to handle the nonconvexities of the 
original problem. Specifically, a convenient change of variables and a constraint relaxa-
tion are performed, while a successive linearization of the equations of motion is em-
ployed to handle the nonlinear dynamics. A filtering technique concerning the recursive 
update of the reference solution is proposed in order to enhance the algorithm robustness. 
Numerical results are presented and compared with those provided by an indirect method.  
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AAS 19-767 

MISSED THRUST ANALYSIS FOR 
A POTENTIAL MARS SAMPLE RETURN ORBITER 

José M. Sánchez Pérez* and Gábor I. Varga*  

Studies for an international NASA-ESA Mars sample return consider a hybrid Earth re-
turn orbiter capable of performing chemical Mars orbit insertion and using elsewhere so-
lar electric propulsion in order to achieve its mission. This work presents the approach 
used to analyze the impact of unplanned outages producing missed thrust in the outbound 
and inbound heliocentric transfers. Safe mode statistics from NASA missions and an iter-
ative trajectory optimization process enable a probabilistic analysis using Monte Carlo 
simulation. Results of the analysis are fundamental to assess the adequacy of propellant 
and time margins used in trajectory design.  

[View Full Paper] 

 

 

 

                                                                 
* Mission Analyst, Flight Dynamics Division, ESA, European Space Operations Centre, Robert-Bosch-Str. 5, 64293, 
Darmstadt, Germany. 

128

http://www.univelt.com/book=7780


  

AAS 19-768 

DEPENDENT VARIABLE INTEGRATION FOR EVENT FINDING 
WITH VALIDATION IN ORBIT PROPAGATION 

Anthony Iannuzzi* 

Space mission planning is a task that may rely on orbital and system level events to trig-
ger a desired response. These events are defined as zero-crossings of a mathematical 
function. As an alternative to iterative root-finders, Henon’s Method is a non-iterative 
integration technique, capable of finding events in an autonomous system. A new catego-
ry of event finders is introduced, called Integrate To Solve (ITS) methods. ITS methods 
include Henon’s Method and two new methods: Single Robust Integration of System 
(SRIS), and Repeatedly Integrate Derivative of the Interpolator to Tolerance (RIDIT). 
SRIS and RIDIT build upon Henon’s Method, making it applicable to non-autonomous 
systems. They predict the direction of ITS integration and implement bisection as a back-
up for robustness. A new technique is introduced that makes ITS methods derivative-free, 
extending applicability. Events describing when a ground station has access to a satellite 
and the max angular rate at which the station’s antenna must move to track the satellite 
are used to evaluate the effectiveness of SRIS and RIDIT with and without the derivative. 
Because Henon’s Method cannot be applied to these event functions, Brent’s Method of 
root-finding is used as a standard of comparison. The improvements made by SRIS and 
RIDIT and the derivative-free option allows ITS methods to have the same broad ap-
plicability as other contemporary root-finders.  
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AAS 19-770 

ACCURATE LOW-THRUST ORBIT TRANSFER SOLUTIONS IN 
EQUINOCTIAL ELEMENTS USING AN ANALYTIC 

REPRESENTATION OF THE GEOPOTENTIAL* 

Zachary J. Folcik† and Paul J. Cefola‡ 

Analytical gravity models are included in the equinoctial element formulation of the low-
thrust optimal equations of motion and the adjoint equations for the Lagrange multipliers. 
Geopotential models of up to degree and order four are developed and tested in this pa-
per; the capability to write analytic expressions for arbitrary degree and order geopoten-
tials follows from the Maxima symbolic algebra approach employed. Previous work us-
ing tensors to transform accelerations from inertial coordinates to Euler-Hill coordinates 
is extended for a general geopotential. The correctness of the tensors is verified. Optimal 
low-thrust orbital transfer solutions under the influence of gravitational perturbations are 
described.  
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AAS 19-774 

SOLAR SAIL TRAJECTORIES AND ORBIT PHASING OF 
MODULAR SPACECRAFT FOR SEGMENTED TELESCOPE 

ASSEMBLY ABOUT SUN-EARTH L2 

Gabriel J. Soto,* Erik Gustafson,† Dmitry Savransky,‡  
Jacob Shapiro* and Dean Keithly*  

In-space assembly of a segmented primary mirror is needed to produce a large primary mir-
ror bigger than LUVOIR, about 30m in diameter. We propose a novel mission concept for 
a segmented space telescope where each identical mirror segment is placed on modular 
spacecraft. Individual modules are launched as payloads of opportunity that self-assemble 
about the Sun-Earth L2 point. They use a solar sail as a means of continuous thrust propul-
sion. After docking, the solar sails are steered to overlap and create a planar sun shield for 
the telescope. We provide the framework for minimizing the total mission assembly time.  
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AAS 19-779 

INTERPLANETARY LOW-THRUST DESIGN USING PROXIMAL 
POLICY OPTIMIZATION 

Daniel Miller,* Jacob A. Englander† and Richard Linares‡ 

This paper aims to demonstrate a reinforcement learning technique for developing com-
plex, decision-making policies capable of planning interplanetary transfers. Using Proxi-
mal Policy Optimization (PPO), a neural network agent is trained to produce a closed-
loop controller capable of mass-optimal transfers between Earth and Mars. The agent is 
trained in an environment that utilizes a real ephemeris model of the Earth and Mars. 
Multiple scenarios are presented with both fixed and variable time steps. The results are 
compared against those generated by the Evolutionary Mission Trajectory Generator 
(EMTG) tool.  
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AAS 19-782 

HOMO- AND HETEROCLINIC CONNECTIONS IN THE SPATIAL 
SOLAR-SAIL EARTH-MOON THREE-BODY PROBLEM 

Jeannette Heiligers* 

This paper investigates homo- and heteroclinic connections between solar-sail periodic 
orbits in the Earth-Moon circular restricted three-body problem (CR3BP). While homo- 
and heteroclinic connections have been explored extensively in the classical Earth-Moon 
CR3BP, the inclusion of a solar-sail induced acceleration introduces a time-dependency 
into the dynamics. This time-dependency prevents the use of traditional tools that reduce 
the dimensionality of the problem in search for such connections (e.g., the Jacobi con-
stant and spatial Poincaré sections). Previous work by the author has already demonstrat-
ed that homo- and heteroclinic connections can be found in the planar solar-sail Earth-
Moon three-body problem for a perfectly reflecting solar sail by introducing: 1) a piece-
wise constant sail attitude along the unstable and stable solar-sail assisted manifolds, 2) 
the concept of temporal Poincaré sections, and 3) a genetic algorithm approach. This pa-
per extends the work to the spatial problem and will also, for the first time, explore the 
effect of non-specular reflectance properties of the solar sail on the connections. Both 
homo- and heteroclinic connections between planar Lyapunov orbits and between halo 
orbits are presented for different solar-sail models, with errors on the position and veloci-
ty at the connection of the unstable and stable manifolds of, on average, 1 km and 25 m/s 
for the planar case and 15 km and 56 m/s for the spatial case.  
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AAS 19-789 

PARKER SOLAR PROBE MISSION DESIGN 

Yanping Guo* 

A mission to the sun originally called Solar Probe was first considered in 1958 and stayed 
in concept and feasibility studies for five decades until 2007, when a new mission design 
was created that changed the original mission architecture. The re-designed mission was 
named Solar Probe Plus due to significant advantages in technical implementation and 
science return, and it was renamed Parker Solar Probe (PSP) in 2017. PSP was launched 
on August 12, 2018 as the first mission to touch the Sun. This paper presents an overview 
of the mission design changes over the mission development phase and the final PSP 
mission design, including the launch, launch targets, and full set of mission trajectories 
over the 24-day 2018 launch period. Core to the PSP mission design is a unique V7GA 
mission trajectory that uses 7 Venus gravity-assists to spiral down to the Sun, as close as 
9.86 solar radii from the Sun’s center, and offers 24 solar encounters in 7 years of the 
mission by visiting the Sun 3 to 4 times per year.  
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AAS 19-799 

SURVEY OF LOW-THRUST, EARTH-MARS CYCLERS 

Robert Potter,* James Longuski† and Sarag Saikia‡ 

Twenty-two, Earth-Mars cyclers are presented that produce a Pareto front from which 
mission designers can select. The number of cycler geometries investigated is based on 
three criteria: 1) a maximum number of four vehicles required to cover every crewed 
Earth-to-Mars and Mars-to-Earth transfer, 2) an average of less than 1 km/s of ΔV re-
quired per synodic period (2.1 years), and 3) a low-thrust propulsion system with a thrust-
to-weight ratio of 0.1 N/Mg (mm/s2). Twenty unique geometries and two hybrid geome-
tries satisfy those constraints totaling 78 trajectories that were propagated using MALTO 
spanning 2018 to 2056. Out of the twenty-two cyclers, we have identified five that with 
the most desirable characteristics—Cycler 9, Cycler 10+12, Cycler 16, Cycler 4+5, and 
Cycler 2.  
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AAS 19-800 

LEVERAGING NASA’S LUNAR GATEWAY AND HUMAN LANDING 
SYSTEM FOR LOW-COST MARS ORBITAL MISSIONS 

Robert Potter,* Sarag Saikia† and James Longuski‡ 

NASA is pushing to have a human presence in lunar orbit in the 2020s and a human land-
ing on the Moon by 2024. This paper outlines three Mars orbital missions in 2035, 2039, 
and 2044 with excursions to Phobos and Deimos for minimal cost. The missions leverage 
the same systems used in NASA’s proposed Lunar Gateway and Human Landing Sys-
tem. A stop-over and cycler architecture are compared in terms of cost (including hard-
ware, launch, and operations) and logistics (launch manifest and supply aggregation loca-
tions). From 2025 to 2045, the stop-over and cycler architectures cost $46 and $39 billion 
respectively in 2019 constant purchasing power. The stop-over architecture is easier to 
initially implement but requires $5 billion per mission in propellant launches. The cycler 
architecture is more costly in the first half because a large Mars logistics node, an in-
bound cycler, and an outbound cycler must be built before the first mission, which may 
not be feasible, because it coincides with the first new Moon landings.  
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AAS 19-806 

L2 STATION KEEPING MANEUVER STRATEGY FOR 
THE JAMES WEBB SPACE TELESCOPE 

Jeremy Petersen* 

The station-keeping plan for the James Webb Space Telescope achieves zero velocity in 
the x-component at the fourth successive crossing of the XZ plane of the rotating libra-
tion point frame. A differential corrector is employed to determine the necessary delta-v. 
Maneuvering along the position component of the stable eigenvector of the monodromy 
matrix produces a minimum delta-v solution. The techniques developed to determine the 
minimum maneuver direction in a full ephemeris model, along with strategies to cope 
with the attitude constraints imposed by the sunshield that prevents the ability to maneu-
ver along the stable eigenvector, are examined in this study.  
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AAS 19-811 

A UNIFIED FRAMEWORK FOR 
AEROCAPTURE SYSTEMS ANALYSIS 

Athul Pradeepkumar Girija,* Sarag J. Saikia,† 
James M. Longuski‡ and James A. Cutts§ 

A unified framework for aerocapture systems analysis studies is presented, taking into 
account the interconnected nature of interplanetary trajectory design and vehicle design. 
One of the limitations of previous aerocapture systems studies is their focus on a single 
interplanetary trajectory for detailed subsystem level analysis. The proposed framework 
and aerocapture feasibility charts enable a mission designer to perform rapid trajectory 
and vehicle design trade-offs, and is illustrated with its application to a Neptune mission. 
The approach can be applied to other atmosphere-bearing Solar System destinations. The 
framework can be implemented in an aerocapture software suite to enable rapid mission 
design studies.  
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AAS 19-815 

AEROCAPTURE PERFORMANCE ANALYSIS FOR A NEPTUNE 
MISSION USING A HERITAGE BLUNT-BODY AEROSHELL 

Athul Pradeepkumar Girija,* Sarag J. Saikia,† James M. Longuski,‡  
Shyam Bhaskaran,§ Matthew S. Smith** and James A. Cutts†† 

The large navigation and atmospheric uncertainties at Neptune have historically driven 
the need for a mid-lift-to-drag (L/D) vehicle with (L/D)max of 0.6–0.8. All planetary entry 
vehicles flown to date are low-L/D blunt-body aeroshells with L/D less than 0.4. The lack 
of a heritage mid-L/D aeroshell presents a long pole for Neptune aerocapture, as the de-
velopment and testing of a new entry vehicle incurs significant cost, risk, and time. Tech-
niques which may allow Neptune aerocapture to be performed using heritage low-L/D 
blunt-body aeroshells are investigated, and obviate the need for mid-L/D aeroshells. A 
navigation study is performed to quantify the delivery errors, and a new guidance algo-
rithm with onboard density estimation is developed to accommodate atmospheric uncer-
tainties. Monte Carlo simulation is used to analyze aerocapture performance of a vehicle 
with L/D = 0.4. One hundred percent of the cases captured successfully and show a 
99.87% probability of achieving the desired science orbit with a total of 396 m/s propul-
sive V budget, even with worst-case atmospheric uncertainties.  
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AAS 19-816 

MID-COURSE CORRECTION CONTINGENCY ANALYSIS FOR 
THE JAMES WEBB SPACE TELESCOPE 

Taabish Rashied,* Benjamin Stringer,* Jeremy Petersen† and Karen Richon‡ 

This investigation details two analyses performed as part of an early orbit contingency 
operations study related to the James Webb Space Telescope’s limited ability to maneu-
ver in a sunward direction. First, contingency planning developed by the Flight Dynamics 
Team and shared with the Science and Operations Center to quickly assess the available 
timeline in the event of a delayed mid-course correction maneuver is presented. Second, 
the methods for recovering from a maneuver overburn using observatory geometry to ex-
ploit the solar radiation pressure perturbation contributions from the large sunshield as 
well as adjusting the maneuver campaign to recover the observatory are examined.  
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AAS 19-824 

REVISITING TRAJECTORY DESIGN WITH STK ASTROGATOR 
PART 1 

Cody Short,* Pradipto Ghosh† 
and Austin Claybrook‡ 

Despite more than six decades of ongoing presence in space, the process of spacecraft 
trajectory design remains challenging. As orbital regimes become more crowded and at-
tainable from an expanding industry, new challenges arise. Research efforts to better un-
derstand previously unexploited strategies and drive innovation in the face of new con-
straints continue to increase. At the same time, all of these research and design efforts are 
restricted by the complication of a “lab” where designers cannot physically interact with 
their designs; they are confined to a virtual workbench. Indeed, it is not uncommon for 
trajectory designers to spend much of their time creating tools for that workspace. This 
situation is strange as most industries that involve design and analysis typically do not 
build their own tools. The Systems Tool Kit (STK) Astrogator module from Analytical 
Graphics, Inc. (AGI) is one such tool intended to improve the trajectory design and anal-
ysis process, both for the engineer and for the solution. Astrogator’s evolving develop-
ment is the subject of this paper.  
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AAS 19-829 

TRAJECTORY DESIGN FOR 
A SOLAR POLAR OBSERVING CONSTELLATION 

Thomas R. Smith,* Natasha Bosanac,† Thomas E. Berger,‡  
Nicole Duncan§ and Gordon Wu** 

Space-based observatories are an invaluable resource for forecasting geomagnetic storms 
caused by solar activity. Currently, most space weather satellites obtain measurements of 
the Sun’s magnetic field along the Sun-Earth line and in the ecliptic plane. To obtain 
complete and regular polar coverage of the Sun’s magnetic field, the University of Colo-
rado Boulder’s Space Weather Technology, Research, and Education Center (SWx 
TREC) and Ball Aerospace are currently developing a mission concept labeled the Solar 
Polar Observing Constellation (SPOC). This concept comprises two spacecraft in low-
eccentricity and high-inclination heliocentric orbits at less than 1 astronomical unit (AU) 
from the Sun. The focus of this paper is the design of a trajectory for the SPOC concept 
that satisfies a variety of hardware and mission constraints to improve solar magnetic 
field models and wind forecasts via polar viewpoints of the Sun.  
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AAS 19-831 

HELIOSWARM:  SWARM MISSION DESIGN IN 
HIGH ALTITUDE ORBIT FOR HELIOPHYSICS 

Laura Plice,* Andres Dono Perez† and Stephen West‡ 

Resolving the complex three-dimensional turbulent structures that characterize the solar 
wind requires contemporaneous spatially and temporally distributed measurements. Heli-
oSwarm is a mission concept that will deploy multiple, co-orbiting satellites to use the 
solar wind as a natural laboratory for understanding the fundamental, universal process of 
plasma turbulence. The HelioSwarm transfer trajectory and science orbit use a lunar 
gravity assist to deliver the ESPA-class nodes attached to a large data transfer hub to a 
P/2 lunar resonant orbit. Once deployed in the science orbit, the free-flying, propulsive 
nodes use simple Cartesian relative motion patterns to establish baseline separations both 
along and across the solar wind flow direction.  
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AAS 19-834 

EXPLORATION OF THE IMAP SCIENCE ORBIT DESIGN SPACE 
TO BALANCE NOMINAL AND EXTENDED MISSION TRADES 

Amanda Haapala* and Fazle Siddique† 

The Interstellar Mapping and Acceleration Probe (IMAP) mission, planned for launch in 
2024, will place a spacecraft in a Sun-Earth L1 Lissajous orbit to study the boundary of 
the heliosphere that encapsulates and protects our solar system. The nominal mission is 
planned for two years, with an extended mission expected to continue the science and 
space weather objectives. While the design space is relatively small, the mission costs 
can vary significantly. Here, studies of the multidimensional trade space are presented 
that enable selection of the optimal science orbit that balances the needs of both the nom-
inal and extended missions.  
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AAS 19-836 

NAVIGATING TO A KUIPER BELT OBJECT: MANEUVER 
PLANNING ON THE APPROACH TO ULTIMA THULE 

Michael J. Salinas,* Dale R. Stanbridge,* Kenneth E. Williams,*  
Frederic J. Pelletier,* Jeremy A. Bauman,* Joel T. Fischetti,*  

Derek S. Nelson,* Erik Lessac-Chenen,* John Y. Pelgrift,*  
Bobby G. Williams,* Mark E. Holdridge,† Yanping Guo,†  
Wayne R. Schlei,† Gabe D. Rodgers,† Hal A. Weaver,†  
S. Alan Stern,‡ Cathy B. Olkin‡ and John R. Spencer‡  

Nearly thirteen years and over 6.5 billion kilometers into its voyage out of the solar sys-
tem, on January 1, 2019, the New Horizons spacecraft achieved the milestone of explor-
ing the furthest, most primitive object ever observed up close. With a closest approach 
distance of just over 3500 km, New Horizons has yielded detailed, high resolution images 
of the Kuiper Belt Object Ultima Thule. This paper describes the experience of navi-
gating to Ultima Thule over the final year prior to the closest approach. It discusses the 
optimal placement of maneuver opportunities, and shares the challenges of deciding 
which maneuvers to execute given the information available at the time.  
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AAS 19-838 

ROBUST TRAJECTORY OPTIMIZATION USING  
MINIMUM-UNCERTAINTY COST FUNCTIONS 

Erica L. Jenson* and Daniel J. Scheeres† 

In microgravity environments where maneuvers are propellant-inexpensive but uncertain-
ties are high, a minimum-uncertainty trajectory optimization may be preferred over a 
minimum-propellant optimization. This paper presents a method to design open-loop, 
continuous thrust orbit transfers while minimizing final state error covariance. Both ini-
tial state uncertainty and control-linear noise are included. Linear covariance propagation 
is used to form a Bolza-type cost function, and locally-optimal trajectories are found with 
indirect single shooting. The method is applied to asteroid orbit transfers in the two body 
problem. Homotopy methods are used to investigate the solution space between mini-
mum-energy and minimum-uncertainty solutions.  
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AAS 19-847 

MICRO-PULSED PLASMA THRUSTER MANEUVER 
CHARACTERIZATION 

Andrew Wilchynski,* Nicholas Nuzzo† and Jennifer S. Hudson‡ 

The Optical Plasma Spectroscopy CubeSat (OPS-Cube) will consist of a 6U CubeSat 
equipped with a micro-pulsed plasma thruster and an optical emission spectrometer. The 
mission will demonstrate on-orbit electric propulsion thruster diagnostics via optical 
measurements of the thruster’s plasma plume. The OPS-Cube mission offers a unique 
opportunity to characterize the micro-pulsed plasma thruster’s capabilities for small satel-
lite orbit maneuvers. This paper describes the orbit maneuver design for the OPS-Cube 
mission, including the effects of mission and system-level constraints on thruster opera-
tion and sensitivity to thrust vector misalignment.  

[View Full Paper] 

 

 

 

                                                                 
* Student, Mechanical and Aerospace Engineering, Western Michigan University, 1903 W. Michigan Ave., Kalamazoo, 
Michigan 49008-5343. 
† Student, Mechanical and Aerospace Engineering, Western Michigan University, 1903 W. Michigan Ave., Kalamazoo, 
Michigan 49008-5343, USA. 
‡ Associate Professor, Mechanical and Aerospace Engineering, Western Michigan University, 1903 W. Michigan Ave., 
Kalamazoo, Michigan 49008-5343, USA. 

147

http://www.univelt.com/book=7839


  

AAS 19-848 

OPTIMAL SPACECRAFT DOCKING MANEUVER USING DIRECT 
AND INDIRECT COLLOCATION METHOD AND PARTICLE 

SWARM OPTIMIZATION 

Damien Guého,* Guanwei He,† Puneet Singla‡ and Robert G. Melton§ 

In this paper, an indirect method combined with a heuristic approach is investigated to 
solve an optimal spacecraft docking maneuver problem. The relative dynamic frames 
used are the fully nonlinear Clohessy-Wiltshire equations for relative translation dynam-
ics and the Euler equations of rotation for rotation of the two spacecrafts. Both direct and 
indirect collocation methods are implemented and results from these two optimization 
methods are compared and discussed. Theoretically, the indirect method presents the dif-
ficulty that the problem size is large due to discretization of the costates in addition to 
requiring good enough initial guesses for the costates variables. This paper presents a 
new approach where a heuristic optimization (HO) algorithm is used beforehand to gen-
erate a sufficiently accurate initial guess for the costates variables used for the collocation 
method applied later on. The heuristic algorithm is able to perform a global search in the 
space of the unknown costates in order to efficiently initialize the collocation algorithm. 
In this work, the method will focus on a minimum time maneuver problem and a com-
bined minimum time and minimum energy problem. Results show that the indirect collo-
cation method with a good guess performs better than a purely direct approach. However, 
the direct method is useful to compare and gain insights for different kinds of problems 
as well as to give initial estimations of the total time and energy cost.  
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AAS 19-851 

LOW THRUST TRANSFERS BETWEEN HALO ORBITS IN 
THE EARTH-MOON SYSTEM 

Mohammad S. Azhar* and Robert G. Melton† 

This paper presents the use of particle swarm optimization (PSO) for optimizing the time 
and propellant consumed in low-thrust and finite-thrust transfers between halo orbits of 
various amplitudes in the Earth-Moon system, using the circular restricted 3-body prob-
lem dynamics. PSO is employed to find the optimum thrust pointing angles and the time 
of the transfer trajectory. The algorithm is able to determine optimum transfer trajectories 
between halo orbits around Earth-Moon L1 and L2 libration points for continuous low-
thrust trajectories, as well as for finite-thrust trajectories with and without an assumed 
coasting arc.  
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AAS 19-865 

ANALYSIS OF A CONSTRAINED OPTIMAL MULTIPLE-PHASE 
LANDING TRAJECTORY FOR A SMALL ROBOTIC LUNAR 

LANDER 

J.P. Carrico III,* Jae-ik Park,† Alisa Hawkins‡ and Dong-Young Rew§ 

KARI is planning to launch a small robotic lunar lander using its own launch vehicle af-
ter the first Korean lunar orbiter, Korea Pathfinder Lunar Orbiter (KPLO). For the suc-
cessful landing mission using comparatively small launch capability, minimization of the 
fuel necessary for landing is critical. We have performed preliminary design and analysis 
for the system configuration of a potential lunar lander, with a specific focus on under-
standing the necessary mass fractions, thrust level, and attitude during a powered descent. 
This paper details how the constrained optimal multiple-phase landing trajectory of a 
small robotic lunar lander was analyzed for the second phase of the Korean lunar explora-
tion program.  
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AAS 19-867 

HELIOCENTRIC ESCAPE AND LUNAR IMPACT FROM 
NEAR RECTILINEAR HALO ORBITS 

Diane C. Davis,* Kenza K. Boudad,† Rolfe J. Power‡ and Kathleen C. Howell§ 

Spacecraft departing from the Gateway in a Near Rectilinear Halo Orbit (NRHO) experi-
ence gravitational forces from the Moon, the Earth, and the Sun, all of which can be sim-
ultaneously significant. These complex dynamics influence the eventual destinations of 
the departing spacecraft. The current investigation examines the flow of objects leaving 
NRHOs in the Bicircular Restricted Four-Body Problem, and results are applied to helio-
centric escape and lunar impact trajectories in a higher-fidelity ephemeris model. Separa-
tion maneuver magnitude, direction, and location are correlated with successful departure 
to various destinations via maps and specific examples.  
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AAS 19-878 

SELECTING PLANNING HORIZON LENGTH FOR SEQUENTIAL 
LOW-THRUST ORBIT-RAISING OPTIMIZATION PROBLEM 

Pardhasai Chadalavada* and Atri Dutta† 

In this paper, we revisit the low-thrust multi-revolution orbit-raising problem formulated 
as a sequence of optimal control sub-problems, each of which computes the trajectory 
over a planning horizon. Each sub-problem solves an unconstrained optimization prob-
lem described in terms of dynamical coordinates, by minimizing a convex combination of 
three components reflecting the deviation of the maneuvering spacecraft from the geo-
synchronous equatorial orbit. This paper explores the impact of planning horizon time-
length on the optimality gap of the computed solutions, by considering minimum-time 
solutions as the reference. Numerical results are presented by considering transfers start-
ing from non-planar geosynchronous transfer orbits.  
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AAS 19-883 

MISSED-THRUST ANALYSIS OF BEPICOLOMBO’S 
INTERPLANETARY TRANSFER TO MERCURY ORBIT 

Pablo Muñoz* 

After a successful launch on October 20th 2018, the BepiColombo mission will spend 
seven years in interplanetary cruise in order to reach Mercury orbit by means of nine 
planetary gravity assists (Earth, Venus and Mercury) and extensive usage of its solar-
electric propulsion. In preparation for the autumn-2018 launch period, a missed-thrust 
analysis of BepiColombo’s interplanetary transfer was carried out to evaluate the robust-
ness of the reference trajectory against contingency thrust outages. This paper describes 
the assumptions, methodology, implementation choices and results of this analysis, as 
well as the derived conclusions, trajectory modifications and recommendations for flight 
operations.  
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AAS 19-893 

RISK-AWARE TRAJECTORY DESIGN WITH IMPULSIVE 
MANEUVERS: CONVEX OPTIMIZATION APPROACH 

Kenshiro Oguri* and Jay W. McMahon† 

Guaranteeing safety is a major concern in any space mission design. It is especially im-
portant for missions that need to operate in uncertain environment or that require space-
crafts make decisions autonomously. Although the current mission design typically takes 
heuristic safety margins for the design constraints, such approaches may not capture the 
actual realizations of the uncertainties. To address the issue, we propose a new approach 
termed risk-aware trajectory design that optimizes spacecraft trajectories under uncertain-
ties by applying chance-constrained optimal control to astrodynamics. As a first part of 
our two-part series, this paper focuses on trajectory design with impulsive maneuvers. 
The developed algorithm optimizes trajectories via sequential convex optimization with 
probabilistic safety constraints. The theoretical development is numerically demonstrated 
with a science orbit transfer scenario around an asteroid inspired by the OSIRIS-REx 
mission.  
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AAS 19-895 

OPTIMAL INSPECTION TRAJECTORIES WITH ENFORCEMENT 
OF CHIEF AND INSPECTOR-CENTERED DYNAMIC ZONE 

CONSTRAINTS 

Mark R. Mercier* and Kirk W. Johnson† 

The need for on-orbit optimal inspection missions has risen with the aging of important 
legacy space assets. It is of interest to complete inspection missions without interruption 
of mission operations which can be simulated via dynamic keep-in and keep-out zone 
constraints. In addition, inspection pointing requirements must be captured via a body-
fixed, inspector-centered keep-in zone constraint. This study implements a technique ca-
pable of finding the optimal inspection trajectory in the presence of multiple dynamic 
zone constraints which are either chief or inspector-fixed. This technique is demonstrated 
in two examples with unique constraint zone scenarios.  
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AAS 19-904 

FAST SOLUTION OF OPTIMAL CONTROL PROBLEMS WITH 
L1 COST 

Simon Le Cleac’h* and Zachary Manchester† 

We propose a fast algorithm for solving optimal control problems with L1 control cost. 
Convergence to the global optimum is guaranteed for systems with linear dynamics, and 
the algorithm can also be used to find local optima for nonlinear dynamical systems. Our 
approach relies on the alternating direction method of multipliers (ADMM) and uses a 
fast trajectory optimization solver based on iterative LQR. The low computational com-
plexity coupled with the fast execution of this algorithm make it suitable for implementa-
tion in flight software.  
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AAS 19-909 

FLYBY IN THE SPATIAL THREE-BODY PROBLEM 

Davide Menzio* and Camilla Colombo† 

The spatial flyby map originates from the planar one to extend its applicability to the out-
of-plane dynamics of the circular restricted three-body problem. A novel parametrisation 
enables to give new insights on the effect of the flyby on inclined orbits. The main con-
tributions of this paper consists first of all in the development of the method itself, sec-
ondly, in the identification of two type of trajectories: prograde (type I) and retrograde 
(type II) flybys. Finally, the paper demonstrates that direct gravity assists (type I) are 
more efficient when compared to the retrograde ones. The new approach will enable a 
large-scale of applications in which inclined orbits are necessary for targeting non-
coplanar objects but also to meet some specific mission requirements.  
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AAS 19-912 

RISK-AWARE TRAJECTORY DESIGN WITH CONTINUOUS 
THRUST: PRIMER VECTOR THEORY APPROACH 

Kenshiro Oguri* and Jay W. McMahon† 

This two-part series shares the common objective: design optimal spacecraft trajectories 
with guaranteed safety, with different focuses in terms of the orbit control approaches. 
This paper presents a framework for solving risk-aware trajectory design problems with 
continuous thrust. In contrast to the impulsive maneuver case, convex optimization ap-
proaches are not suited for the continuous-thrust problems. Instead, this paper extends the 
primer vector theory to incorporate deterministic and stochastic state inequality con-
straints. The extended primer vector theory is combined with a direct/indirect hybrid nu-
merical optimization framework to solve continuous-thrust trajectory design problems. 
Part of the theoretical result is demonstrated with numerical examples of many-revolution 
low-thrust trajectory design problems, showing the validity of the theoretical work.  
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AAS 19-915 

REVISITING “HOW MANY IMPULSES?” QUESTION 

Ehsan Taheri* and John L. Junkins† 

Theodore Edelbaum asked a fundamental question in a 1967 paper: “How Many Impuls-
es?” The question asks: For a general orbit transfer with some unknown number, Nimp of 
impulsive velocity changes: 1) how many impulses, 2) at what times, and 3) in what di-
rection should these impulses be applied to minimize the total impulse, v? Impulsive 
solutions determine bounds on both minimum time and minimum fuel extremals and also 
provide reachability insights. We present a unified approach (through what we introduced 
optimal switching surfaces) that encompasses all extremal impulsive and low-thrust tra-
jectories. It presents a systematic approach to answer Edelbaum’s question and can be 
viewed as a unification in astrodynamics where the connection between impulsive and 
continuous-thrust trajectories.  
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AAS 19-918 

ENABLING SUSTAINABLE HUMAN EXPLORATION OF MARS VIA 
AN ORBITAL LOGISTICS NODE 

Rachana Agrawal,* Robert Potter,† Sarag J. Saikia‡ and James M. Longuski§ 

To enable sustainable human exploration of Mars, supply chains are crucial and must 
have nodes at critical locations such as the Earth’s surface, Earth’s orbit, cis-lunar space, 
Mars’ orbit and the surface of Mars. In this paper, we define the functions of a Mars or-
bital logistics node; define its elements and configurations; and determine the implica-
tions of having such a node in Mars orbit. We describe one such logistics node in orbit 
around Mars, envisaged to with have aggregation, refueling, and refurbishing capabilities. 
To assess a node’s efficacy, we present preliminary results from the assessment of im-
pacts of arrival and departure interplanetary trajectories, and landing site on the selection 
of orbital logistics node orbit—one of the primary design drivers. A Low Mars Orbit is 
found to be most suitable node orbit in terms of overall ΔV requirement.  
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AAS 19-924 

CHEBYSHEV DYNAMICS APPROXIMATION METHOD 

Tyler Doogan* and Manoranjan Majji† 

A trajectory optimization approach that approximates the system dynamics, as opposed to 
transcribing the state trajectories is presented in the paper. Chebyshev polynomials are 
used to illustrate the methodology. The process of discretizing the system dynamics for 
dynamic optimization purposes is shown to be applicable to a wide variety of dynamic 
optimization problems. Approximating the system dynamics, along with the properties of 
the Chebyshev polynomials provides a unique pseudospectral method, with attractive 
properties. The advantages of using this method are demonstrated using benchmark prob-
lems, and its performance is compared to the well known pseudospectral methods.  
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AAS 19-926 

MANEUVER PLANNING FOR THE NISAR MISSION 

F. Rogez,* S. Hatch† and A. Halsell‡ 

NISAR, a joint NASA-ISRO science mission will require maintaining an Earth-fixed 
ground track and altitude to accurately repeat every 12 days. We constructed a ballistic 
reference trajectory that meets the science requirements but excludes some forces. The 
latter are treated as perturbations to be either corrected or absorbed within the require-
ment tolerance. Perturbation prediction errors require frequent and rapid design activities, 
which drive us toward automation, robust implementation, and streamlined processes. 
Combining a simplified model of the effect of future maneuvers, with an accurate propa-
gation of the current trajectory provides a robust control system with appropriate accura-
cy given the input uncertainty.  
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AAS 19-929 

UNCONSTRAINED SPACECRAFT TRAJECTORY OPTIMIZATION 
USING EMBEDDED BOUNDARY VALUE PROBLEMS 

David Ottesen* and Ryan P. Russell† 

An optimization algorithm is described and demonstrated that leverages many solutions 
to embedded boundary value problems along a spacecraft trajectory discretized into many 
segments. For Keplerian dynamics, the boundary value problems are solved with an itera-
tion-free, interpolated solution to Lambert’s problem. The algorithm combines exact first-
order gradients and the Broyden–Fletcher–Goldfarb–Shanno correction for the search 
direction, and implements a simple line search using the golden ratio method and quad-
ratic interpolation. The formulation is purely unconstrained leading to fast runtimes and a 
simpler implementation than typical spacecraft trajectory optimization formulations that 
require constraints. The algorithm is useful as a flexible, preliminary direct method capa-
ble of minimizing the sum of delta-vs, the sum of the square of delta-vs, or a homotopy 
between the two. The algorithm incorporates different time-free transfers such as fixed-
state to fixed-state or orbit to orbit, and approximates both high and low thrust. The opti-
mization variables are primarily position enabling more intuitive, physical initial guess 
schemes. Unlike many trajectory optimization applications, this algorithm’s computa-
tional runtime for two-body dynamics is dominated by large matrix manipulations after 
approximately 100 discretization nodes, not the computation of the dynamics nor gradi-
ents. This limitation, common to all direct methods, practically restricts the number of 
revolutions to approximately 50 or 100 in order to keep single-processor runtimes on the 
order of minutes or hours, respectively. On the other hand, this algorithm is highly effi-
cient for transfers on the order of tens of revolutions. Several examples demonstrate the 
effect on performance of different initial guesses, optimizers, embedded boundary value 
problem solvers, cost minimizations, and node count. The optimal trajectories within 
these demonstrations use hundreds of segments, include up to 50 revolutions, and have 
single-processor runtimes on the order of seconds to minutes. The scope of this work is 
limited to two-body dynamics to emphasize the quickness of the algorithm and its utility 
to provide an initial guess for problems with two-body perturbations.  
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AAS 19-932 

DESIGN AND SYNTHESIS OF ENTRY, POWERED DESCENT AND 
LANDING MANEUVER TRAJECTORIES USING MOTION 

ENVELOPES 

Melissa M. Onishi* and Dilmurat M. Azimov† 

NASA’s past Mars missions such as Mars Pathfinder, the Mars Exploration Rovers and 
the Mars Science Laboratory projects have led to the necessity of designing the next gen-
eration of landers, one of the goals of which is to achieve safe and precise landing. Previ-
ous studies focused on the formulation of manifolds of initial and final points for atmos-
pheric entry, powered descend and landing. These manifolds can be generated by a con-
struction of envelopes of the maneuver trajectories using a vast range of terminal condi-
tions for the trajectory and lander’s parameters. This paper proposes improvements to the 
current design of three primary phases throughout the entry, descent and landing maneu-
ver. These phases are the exoatmospheric thrust phase, atmospheric transit phase and 
powered descent and landing phase. A two-dimensional trajectory analyses for each 
phase are presented for a wide range of constant specific impulse and thrust-to-weight 
ratio along with an illustrative example.  
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AAS 19-601 

LONG-TERM NUMERICAL PROPAGATION FOR 
EARTH ORBITING SATELLITES 

David A. Vallado* 

Numerical propagation techniques have been extensively studied and are routine for pre-
cise satellite operations. Most studies focus on time spans of a few days to several weeks, 
specific orbital classes, or interplanetary orbits. As long term numerical operations be-
come more commonplace, it’s useful to quantify accuracy performance for propagations 
of several months, to years. This paper performs long-term numerical propagation com-
parisons against reference orbits in a variety of orbital classes. Semianalytical techniques 
are also used in the comparisons including a general discussion of the initial osculating to 
mean element conversion. Finally, orbital size, shape, and orientation considerations are 
examined.  
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AAS 19-624 

COMPUTING KEPLER EQUATIONS FOR 
ANALYTIC ORBIT PROPAGATION 

Gim J. Der* 

This paper presents an innovative technique to compute 2-Body and perturbed Kepler 
equations accurately and robustly for analytic orbit propagation for all orbit regimes. The 
traditional Vinti algorithm that includes J2, J3 and most of J4 is extended to include Sun 
and Moon perturbations for most of the deep space objects especially those in GEO. This 
efficient Vinti algorithm is applied to solve the computationally intensive correlation 
problem of catalog building between radar/optical detection data and cataloged objects. 
This algorithm can also predict state vector between 24-hour GPS locks (updates) for 
GPS equipped Cubesats, and consumes less than 3% of the energy of a GPS lock. This 
advantage is being flight tested in the GPSRM 1 Cubesats Proxima I & II.  
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AAS 19-642 

LONG-TERM SURVEY OF LAMR AND HAMR OBJECTS USING 
ANALYTIC TECHNIQUES 

Smriti Nandan Paul,* Bryan D. Little† and Carolin Frueh‡ 

With the states of many objects unknown and an ever increasing space debris population, 
detection of new space objects, especially the ones like high area-to-mass ratio objects 
which are susceptible to large perturbations, is critical for monitoring of near-Earth space. 
As a proof of concept, this paper uses analytic techniques for the survey and follow-up of 
low area-to-mass ratio objects in the geosynchronous (GEO) region. The survey is based 
on the so-called ‘k-surface’ created using long-term propagation of hypothesis objects, 
which are loosely based on GEO catalog objects. The surface is able to detect a decent 
number of GEO catalog objects, which prompts a further investigation where survey is 
carried out for high area-to-mass ratio objects. The surface for high area-to-mass ratio 
objects is created using hypothesis objects based on heuristics. The initial states of these 
hypothesis objects are assumed to be uncertain because of measurement and modeling 
inadequacies. This paper uses analytic perturbation techniques to propagate uncertainties 
in initial Keplerian orbital parameters, area-to-mass ratio, and diffuse reflection coeffi-
cient. The uncertainty propagation is carried out in presence of Earth point gravity and its 
higher harmonics, solar and lunar gravity, and solar radiation pressure. Unscented trans-
formation based sigma points is used for capturing the initial uncertainties.  
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AAS 19-644 

NAVIGATION MODELS FOR 
PSYCHE ELECTRIC PROPULSION UNCERTAINTY* 

Nicholas Bradley,† John Steven Snyder,‡ Drew Ryan Jones,§  
Denis Trofimov** and Dayung Koh†† 

Jet Propulsion Laboratory, California Institute of Technology. 4800 Oak Grove Drive, 
Pasadena, California 91109, USA 

The Psyche mission is planned to be launched to the main belt asteroid (16) Psyche in 
August 2022, using four Hall Effect Thrusters as the sole method of deterministic thrust-
ing. Hall Effect thrusters have never flown in deep-space, and their performance uncer-
tainty must be accounted for to assess expected navigation accuracy for the mission. We 
first discuss existing data on which our models are based. Then, we present the evolution 
of the navigation uncertainty model for low-thrust, with stochastic and bias parameters. 
We explore trajectory uncertainty sensitivity to low-thrust uncertainty model parameters. 
Finally, current results of expected navigation performance are presented.  
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AAS 19-684 

ANALYTIC APPROXIMATIONS OF ORBIT GEOMETRY IN 
A ROTATING HIGHER ORDER GRAVITY FIELD 

Ethan R. Burnett* and Hanspeter Schaub† 

This paper introduces new analytic approximations of the orbital state for a subset of or-
bits in a rotating potential with gravitational harmonics C20 = –J2 and C22. An analytic 
expression for the orbit radius is first obtained, then used to obtain expressions for 3 other 
quantities, which may be combined with equations for the right ascension of the ascend-
ing node and inclination to fully characterize the orbital state. The approximations are 
fully developed for near-circular orbits with initial mean motion n0 around a body with 
rotation rate c. The approximations are shown to be valid for values of  = c n0 > 1, with 
accuracy decreasing as   1, and singularities at  = 1. The methodology in this paper 
can be adapted to approximate eccentric orbits in more general asymmetric potentials, 
and the necessary modifications are discussed.  
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AAS 19-731 

ANALYTIC APPROXIMATION FOR FIXED-ANGLE LOW-THRUST 
TRAJECTORIES VIA LINEAR PERTURBATION THEORY 

Guanwei He* and Robert G. Melton† 

This paper presents an analytic perturbation solution to the equations of a spacecraft mov-
ing in a single plane under constant, fixed-angle, low-level thrust, and influenced by an in-
verse-square gravitational field. The solution is derived by using linear perturbation theory, 
which treats the motion of spacecraft as a linear combination of Keplerian motion and per-
turbed motion caused by the low thrust. Comparisons with direct numerical integration 
show relatively low errors and advantages in calculating speed for the approximate solu-
tion.  
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AAS 19-736 

ORBIT PROPAGATION VIA THE THEORY OF 
FUNCTIONAL CONNECTIONS 

Hunter Johnston* and Daniele Mortari† 

This paper presents a new method to perform accurate perturbed orbit propagation based on 
the Theory of Functional Connections (TFC). This method uses the analytical solution for 
the unperturbed two-body problem as a baseline, and estimates the perturbing term to add 
to the baseline, capturing the perturbations modeled. The main characteristic of this ap-
proach is that the constraints of the IVP problem are analytically embedded into the solu-
tion model which transforms the orbit propagation problem into an unconstrained optimiza-
tion problem. The proposed iterative method is validated by integrating an unperturbed 
two-body problem and using a poor initial orbit guess to study the accuracy and conver-
gence behavior. The solution accuracy is quantified by determining the evolution of the 
orbital invariant parameters (orbit shape, energy, and angular momentum, and the final po-
sition after one orbit). An additional test is included where 10; 000 orbits are conducted 
subject to third-body affects from the moon. In this test, the method converges in 1 iteration 
for 99:99% of the orbit segments.  
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AAS 19-780 

QUASI-HELIOSYNCHRONOUS ORBITS 

M. L. G. T. X. Costa,* R. Vilhena de Moraes,† A. F. B. A. Prado,‡  
and J. P. S. Carvalho§ 

In order to solve correctly the task of searching for heliosynchronous orbits when the equa-
tions of motion become coupled due to the inclusion of sectoral terms in the disturbing po-
tential, the concept of quasi-heliosynchronous orbits is introduced. Using the tools of non-
linear optimization, quasi-heliosynchronous orbits are found for artificial satellites around 
the following bodies: Moon, the Galilean satellites and Titan. Those orbits can be used in 
real applications in missions going to these important celestial bodies.  
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AAS 19-805 

APPLICATION OF UDWADIA-KALABA FORMULATION TO 
THREE-BODY PROBLEM 

Harshkumar Patel,* Troy A. Henderson† and Morad Nazari†  

This paper introduces the Udwadia-Kalaba formulation of constrained dynamics as applied 
to the three-body problem (Sun-Earth-Spacecraft). A dynamic model of the restricted three-
body system is presented to analyze the unconstrained motion of spacecraft at the Lagrange 
point L1. The results verify the instability of L1 due to perturbation from the solar radiation 
pressure (SRP). Then, the Udwadia-Kalaba formulation is applied to derive the equation of 
motion of spacecraft with additional constraints to the three-body systems. The results pro-
vide the thrust force required for the spacecraft to recover its position to the L1 to compen-
sate for the perturbation of SRP. The Baumgarte’s stabilization method is included to ob-
tain results when the spacecraft is inserted into orbit with incorrect initial conditions (i.e. 10 
km away from L1), as usually happens in practice.  
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AAS 19-914 

LUNISOLAR PERTURBATIONS OF HIGH-ECCENTRICITY ORBITS 
SUCH AS THE MAGNETOSPHERIC MULTISCALE MISSION 

Trevor Williams,* Eric Palmer,† Jacob Hollister,† Dominic Godine,†  
Neil Ottenstein† and Rich Burns‡ 

For highly eccentric orbits such as that of the Magnetospheric Multiscale (MMS) mission, 
with apogee radius now 29.34 Earth radii, the third-body effects of Sun and Moon are the 
major perturbations. One key consequence is an oscillation in MMS perigee altitude, on an 
approximately 6 year cycle. This variation has already required perigee-raise maneuvers to 
avoid an untimely reentry. There is also a long-term evolution in the orientation of the 
MMS orbit, with period roughly twice as long. This effect may potentially be useful for 
MMS science studies, as it can bring the spacecraft into new regions of the magnetosphere.  
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AAS 19-619 

MID-LIFT-TO-DRAG RATIO RIGID VEHICLE 6-DOF EDL 
PERFORMANCE USING TUNABLE APOLLO POWERED 

GUIDANCE 

Breanna Johnson,* Ping Lu† and Christopher Cerimele‡ 

The Mid-Lift-to-Drag ratio Rigid Vehicle (MRV) is a candidate in the NASA multi-center 
effort to determine the most cost effective vehicle to deliver a large-mass payload to the 
surface of Mars for a human mission. Products of this effort include six-degree-of-freedom 
(6DoF) entry-to-landing trajectory performance studies for each candidate vehicle. These 
high fidelity analyses help determine the best guidance and control (G&C) strategies for a 
feasible, robust trajectory. This paper presents an analysis of the MRV’s G&C design by 
applying common entry and descent associated uncertainties using a Fully Numerical Pre-
dictor-corrector Entry Guidance (FNPEG) and tunable Apollo powered descent guidance.  

[View Full Paper] 

 

 

 

                                                                 
* Aerospace Engineer, Flight Mechanics and Trajectory Design Branch, NASA JSC/EG5, Houston, Texas 77058, USA. 
† Professor and Chair, Department of Aerospace Engineering, San Diego State University, San Diego, California 
92182, USA. E-mail: plu@sdsu.edu. Fellow AIAA. 
‡ EDL Domain Lead, Aerosciences and Flight Mechanics Division, NASA JSC/EG5, Houston, Texas 77058, USA. 

179

http://www.univelt.com/book=7663


  

AAS 19-638 

THE DEVELOPMENT OF AN OPEN-LOOP ANGULAR 
MOMENTUM UNLOAD METHODOLOGY FOR THE LUNAR 
RECONNAISSANCE ORBITER AND OF ALGORITHMS TO 

PREDICT SYSTEM PERFORMANCE 

Russell DeHart* 

The Lunar Reconnaissance Orbiter is a three-axis stabilized spacecraft launched in 2009. In 
August 2017, the intensity of one of the miniature inertial measurement unit lasers began to 
decline and in March 2018 the unit was powered off to reserve what functionality remained 
for critical activities. Starting in August 2018, the mission began executing open-loop ‘one-
shot’ angular momentum unloads, in which operators briefly fire thrusters, waiting for atti-
tude controller errors to settle between firings. This paper presents models predicting the 
performance of planned one-shot angular momentum unloads. Predicted angular momen-
tum unload duration, fuel usage, and imparted delta-V are compared against operational 
data for unloads in 2018 and 2019.  
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AAS 19-682 

AEROBRAKING TRAJECTORY CONTROL USING 
ARTICULATED SOLAR PANELS 

G. Falcone* and Z. R. Putnam† 

In aerobraking, the orbital energy is reduced by the atmosphere of the planet instead of 
large propulsive maneuvers resulting in propellant mass savings, which in turn lower 
launch costs, make extra mass available for the payload, or extend mission lifetime by con-
serving propellant. However, aerobraking campaigns require 3-9 months to complete and 
are operationally intensive. Aerobraking has been performed seven times in history; in all 
of them, the solar panels were oriented perpendicular to the flow direction prior to each at-
mospheric pass and to the Sun after the pass. This study examines aerobraking in which the 
solar arrays are exploited to provide in-plane control to the spacecraft during the atmos-
pheric pass. This concept has the advantage of being able to compensate for density varia-
tions during the atmospheric pass. This ability can be used to maintain the probe in a safe 
thermal environment while maximizing energy depletion per atmospheric pass. Over an 
aerobraking campaign, this will have the effect of not only minimizing the number of 
apoapsis propulsive maneuvers required to maintain a safe periapsis altitude, but also will 
reduce the time required to complete the aerobraking campaign. On the basis of an analyti-
cal solution obtained through Pontryagin’s minimum principle, an online optimal control 
algorithm has been implemented, which is able to control the atmospheric pass by rotating 
the solar panels. The optimal controller has been built to assure that the solar panels never 
exceed the thermal constraints and to exploit real-time data to maximize the dissipated en-
ergy during an atmospheric pass. Performance analyses of the controller indicate that its 
use enables a decrease of over 70% to the aerobraking duration if the only heat rate is fixed 
and a decrease of over 50% if also the heat load is constrained. Moreover, results show that 
this strategy enables to set and achieve a defined final spacecraft state.  
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AAS 19-725 

IMPROVED ATMOSPHERIC ESTIMATION FOR  
AEROCAPTURE GUIDANCE 

Evan Roelke,* Phil D. Hattis† and R. D. Braun‡ 

Increased interest in Lunar or Mars-sample return missions encourages consideration of 
innovative orbital operations such as aerocapture, which generally provides significant 
mass-savings for orbital insertion at Earth or Mars. Drag modulation architectures offer a 
straightforward approach to orbital apoapsis targeting by enabling ballistic entry, among 
other benefits. A shortcoming of these architectures is the poor estimation of atmospheric 
density resulting in target apoapsis altitude errors. This research seeks to assess and im-
prove upon current atmospheric density estimation techniques in order to support the flight 
viability of discrete event drag modulated aerocapture. Three different estimation tech-
niques are assessed in terms of estimation error and apoapsis altitude error: a static density 
factor, a density array interpolator, and an ensemble correlation filter. The density interpo-
lator achieves a 5% improvement in median apoapsis altitude over the density factor when 
entering at –5.9° and targeting a 2000km apoapsis altitude, while the ensemble correlation 
filter achieves a 7% improvement under identical simulation conditions. The ensemble cor-
relation filter was found to improve with decreasing density search tolerance, achieving a 
4:6% improvement in median apoapsis altitude for a tolerance of 1% over 5%. These im-
provements are dependent on entry and vehicle parameters and improve as the entry angle 
becomes more shallow or the target apoapsis is reduced. Errors in the density factor meas-
urements are main contributors to the error in estimated versus true density profiles.  
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AAS 19-747 

THE FIRST COMMERCIAL LUNAR LANDER MISSION: 
BERESHEET 

Haim Shyldkrot,* Eran Shmidt,† Daniela Geron,‡ Joseph Kronenfeld,§ 
Mike Loucks,** John Carrico,†† Lisa Policastri‡‡ and John Taylor§§ 

On 22 February 2019, at 01:45 UTC SpaceIL's Beresheet spacecraft launched to the Moon 
atop a SpaceX Falcon 9 rocket from Florida. This was the first private mission to the Moon 
and was done by only the 4th country to attempt a soft Lunar landing. On 4 April 2019, 
Beresheet successfully entered Lunar Orbit, and attempted to land on the Moon on 11 April 
2019. In this paper the authors describe the trajectory and maneuver strategy, the naviga-
tion plan, and the ground station and tracking network. The on-orbit results are also de-
scribed and compared with the pre-launch estimate.  
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AAS 19-797 

RADIOMETRIC AUTONOMOUS NAVIGATION FUSED WITH 
OPTICAL FOR DEEP SPACE EXPLORATION* 

Todd A. Ely,† Jill Seubert,‡ Nicholas Bradley,§ Ted Drain,**  
and Shyam Bhaskaran††  

With the advent of the Deep Space Atomic Clock, operationally accurate and reliable one-
way radiometric data sent from a radio beacon (i.e., a DSN antenna or other spacecraft) 
and collected using a spacecraft’s radio receiver enables the development and use of auton-
omous radio navigation. This work examines the fusion of radiometric data with optical 
data (i.e. OpNav) to yield more robust and accurate trajectory solutions and the associated 
navigation algorithms that can be readily adopted for onboard, autonomous navigation. The 
methodology is characterized using a representative high-fidelity simulation of deep space 
cruise, approach, and delivery to Mars.  
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AAS 19-856 

ESTIMATION OF ENTRY VEHICLE PARAMETERS FROM 
TRAJECTORY DATA 

Kevin Bonnet* and Robert D. Braun† 

Trajectory data are used to estimate the shape of an entry vehicle. Vehicle ballistic coeffi-
cient, the lift-to-drag ratio and the instantaneous bank angle are estimated from the 3D 
equations of motion. Sets of possible vehicle shapes are then determined assuming Newto-
nian flow theory. Repeating this process over time can provide further detail on vehicle pa-
rameters and flight control strategies. The impact of errors in the atmosphere model on the 
estimates are assessed and a method is proposed to mitigate these errors. The estimate of 
ballistic coefficient is shown to be only as accurate as the knowledge of the atmospheric 
density; whereas estimates of lift-to-drag ratio and bank angle are shown to be independent 
of atmospheric density error. This analysis is applicable to derivation of vehicle knowledge 
from flight reconstruction and to the conceptual design of entry vehicles that meet a broad 
range of known mission constraints.  
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AAS 19-928 

AUTONOMOUS SATELLITE NAVIGATION USING 
INTERSATELLITE LASER COMMUNICATIONS 

Pratik K. Davé* and Kerri Cahoy† 

This work investigates the use of laser communication (lasercom) intersatellite links to ob-
tain relative position measurements for autonomous navigation. Lasercom crosslinks have 
the potential to provide intersatellite range and bearing measurements in order to accurately 
navigate satellites in a wide set of orbit cases, including GNSS-denied, GNSS-limited, and 
deep-space environments. Numerical simulations are used to compare the lasercom cross-
link approach with traditional positioning and navigation methods in example application 
cases in low Earth-orbit (LEO), geostationary Earth-orbit (GEO), highly elliptical orbit 
(HEO), and a Mars-orbiting constellation. The use of lasercom measurements in Earth-orbit 
results in errors on the order of 2 meters in LEO, 10 meters in GEO, and 50 meters in HEO, 
which is on-par with current GNSS-based navigation errors. A constellation of Mars-
orbiters using the proposed navigation method results in 10-meter position errors, which is 
on-par with current DSN-based navigation errors, when DSN operations are available, and 
better than propagated state knowledge during DSN data gaps. Use of intersatellite la-
sercom systems for orbit determination also decreases dependence on ground-based track-
ing and navigation systems, enabling greater autonomy in space missions.  
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AAS 19-933 

ENTRY TRAJECTORY TRACKING USING 
EQUIVALENT ELEVATION STATE FEEDBACK* 

Jason M. Tardy† 

A new form of entry guidance is proposed which uses angular state feedback to track a ref-
erence trajectory via bank angle modulation. This state consists of an equivalent elevation 
angle, its derivative, and flight path angle. The mathematics of the state are developed with 
respect to time and specific energy, and the solution is shown to be unique. For proof-of-
concept, a linear feedback law is used to simulate reference tracking by an HL-20 class ve-
hicle. Results prove the feasibility of this approach and demonstrate implicit range tracking 
and robustness to dispersions.  
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AAS 19-625 

COMPUTING MULTI-REV LAMBERT EQUATIONS FOR 
RADAR DATA PROCESSING 

Gim J. Der* 

This paper presents how to compute accurately and efficiently multi-rev 2-Body Lambert 
equations, pick the correct 2-Body multi-rev Lambert solution out of 2N+1 without guess-
ing or searching, and then convert analytically to a perturbed Lambert solution via Vinti-
targeting. By picking the correct 2-Body multi-rev Lambert solution and eliminating un-
necessary minimum time calculations without loss of accuracy, the computational efficien-
cy of the 2-Body multi-rev Lambert algorithm, perturbed initial orbit conversion and in 
turn catalog building are greatly improved. The rise of Cubesats presents new opportunities 
for inspection satellite missions using perturbed multi-rev Lambert solutions. This per-
turbed multi-rev Lambert algorithm has been tested and verified extensively using arbitrari-
ly position vectors from the NASA2015 debris catalog and Astrodynamics Support Work-
station (ASW) data.  

[View Full Paper] 

 

 

 

                                                                 
* Principal Director, DerAstrodynamics. 4371 Woodbine Lane, Prosper, Texas 75078, USA. 

190

http://www.univelt.com/book=7668


  

AAS 19-626 

COMPUTING GAUSS-LAPLACE EQUATIONS FOR 
OPTICAL DATA PROCESSING 

Gim J. Der* 

This paper presents an analytic perturbed angles-only algorithm for rapid catalog building. 
The relationship between optical sensor angles data output and the positive real roots of the 
2-Body Gauss-Laplace 8th degree polynomial equations is revisited, so as to provide a bet-
ter method of picking the correct root, if there are multiple positive real roots. Once the cor-
rect root is chosen; a 2-Body initial orbit is found, which can be converted to a perturbed 
initial orbit via analytic Vinti targeting. The perturbed initial orbit is accurate enough to be 
used for uncorrelated target data correlation and delay differential correction processing 
until more correlated data becomes available. Numerical examples provided in this paper 
are computed from GEODSS, GPS, simulated and other real optical data.  
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AAS 19-636 

THE EFFECT OF SMALL FORCES ON JUNO ORBIT 
DETERMINATION DURING THE ORBIT PHASE* 

Yu Takahashi,† Brian Rush‡ and Paul Stumpf§ ** 

The Juno spacecraft reached the Jovian system on 05 July 2016 UTC and has been orbiting 
around Jupiter since then. The primary force acting on the spacecraft is the gravity from 
Jupiter that allows it to orbit in a highly elliptical trajectory that makes one full orbit every 
53 days. Other perturbation sources include the gravity from the Sun and Jovian satellites, 
the solar radiation pressure, the deterministic maneuvers that target the next perijove longi-
tude, statistical maneuvers to trim the trajectory error, and the maneuvers associated with 
the precession turns. These precession turns are performed to maintain Juno’s inertial ori-
entation and also known as small forces. These small forces prove to be one of the key pa-
rameters to estimate for the Juno orbit determination team. It is the purpose of this paper to 
analyze the effect of this small force in terms of the performance between the predicted and 
reconstructed solution deliveries used for the maneuver design.  
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AAS 19-643 

CIS-LUNAR NAVIGATION ACCURACY USING OPTICAL 
OBSERVATIONS OF NATURAL AND ARTIFICIAL TARGETS* 

Nicholas Bradley,† Zubin Olikara,‡ Shyam Bhaskaran§ and Brian Young** 

On-board optical-based autonomous navigation (AutoNav) has the potential to significantly 
reduce reliance on ground-based assets, and can provide a robust back-up system for unex-
pected ground outages. We continue an investigation of AutoNav across the solar system 
by assessing optical-only navigation performance in cis-lunar space using simulated obser-
vations of the center of the Moon, lunar landmarks, artificial satellites, and asteroids. We 
show that AutoNav in cis-lunar space is feasible and effective, and that artificial satellites, 
the Moon center, and lunar landmarks are effective targets for navigation. Optical AutoNav 
is feasible within current technological capabilities.  
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AAS 19-689 

INDEPENDENT NAVIGATION TEAM ORBIT DETERMINATION 
ESTIMATION OF 2014 MU69 FOR NEW HORIZONS’  

KUIPER BELT OBJECT FLYBY 

Dylan R. Boone,* Dianna Velez,† Shyam Bhaskaran,‡ Gerhard Kruizinga,† 
Declan Mages,§ Jeffrey Stuart,† William Owen,** J. Ed Riedel,§  

Jonathon Smith†† and Jeffrey Parker†† 

This paper details the JPL Independent Navigation team’s experience refining the ephemer-
is of (486958) 2014 MU69 through optical navigation and how imaging of the body from 
the spacecraft improved the ground-based orbit solution by reducing the a priori covari-
ance ellipsoid. We discuss how the uncertainty in the target’s orbital elements was im-
proved and how this translated to changes in the B-plane solution. We give examples of 
solutions with and without the use of ground-based occultation data and show that this data 
proved a useful constraint on the time of flight to the body. Data weights, filter setup, and 
residuals are shown, with an emphasis on optical navigation and ephemeris estimation chal-
lenges for this flyby.  
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AAS 19-704 

NEW HORIZONS’ NAVIGATION PERFORMANCE THROUGHOUT 
THE EXTENDED MISSION TO ULTIMA THULE 

Jeremy Bauman,* Fred Pelletier,* Bobby Williams,* Joel Fischetti,* 
Dale Stanbridge,* Michael Salinas,* Derek Nelson,* 
Erik Lessac-Chenen,* John Pelgrift,* Peter Wolff,* 

S. A. Stern,† J. Spencer,† M. Buie,† S. Porter,† C. Olkin,† L. A. Young,† 
Y. Guo,‡ W.R. Schlei,‡ G. Rogers,‡ H. A. Weaver‡ and M. Holdridge‡  

The New Horizons' extended mission to 2014MU69 (nicknamed 'Ultima Thule') was akin 
to the early Apollo program where the project boldly leapt into the unknown relying on in-
genuity to help solve unexpected, complex challenges along the way. Much like New Hori-
zons' primary mission, it was once again a race against time, but now with only three and a 
half years to find a way to accurately determine the future position of a body that wasn’t 
discovered until 2014. Success relied on new optical navigation methods to detect a dimly 
lit object against a dense background starfield as well as teaming up with scientists and as-
tronomers to determine the most accurate ephemeris predictions possible for Ultima Thule. 
The Navigation Team also prepared for the potential challenge of encountering a binary 
system and needing to determine, without any a priori knowledge, each body's orbit about 
the other. This paper will focus on the key functions of the orbit determination process in-
volving radio metric and optical measurements, the estimation of the Ultima Thule ephem-
eris, and the characterization of attitude control small forces acting on the spacecraft. A 
complete overview of the New Horizons extended mission is also presented in order to 
document the performance and results of the orbit determination and trajectory targeting 
maneuvers that enabled a successful flyby of Ultima Thule.  
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AAS 19-716 

APPLICATION OF DUAL NUMBER THEORY TO 
STATISTICAL ORBITAL DETERMINATION 

Christopher B. Rabotin* 

The problem of computing a matrix of partial derivatives with respect to a state to be esti-
mated is shown to be solved using dual number theory. Specifically, hyper-dual spaces are 
used to compute the state transition matrix and the sensitivity matrix used in Kalman filter-
ing. An implementation of this method has been demonstrated in a programming language 
called Rust. Benchmarks show similar computation time performance between the analyti-
cal method and the hyper-dual method for computing the state transition matrix.  
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AAS 19-746 

A STUDY ON EFFECTIVE INITIAL GUESS FINDING METHOD 
BASED ON BÉZIER CURVES: ORBIT DETERMINATION 

APPLICATIONS 

Daegyun Choi,* Sungwook Yang,* Henzeh Leeghim† and Donghoon Kim‡ 

In celestial mechanics, proper orbits related to missions are obtained by solving two-point 
boundary value problems. Since a selection method of initial value affects the convergence 
of the solution, developing an effective method to find an initial guess is required. In this 
work, Bézier curves, which can describe complicated curves and surfaces, are utilized to 
find the initial guess. First, the given problems are transformed into Bézier curves forms, 
and Bézier curves’ control points, which can handle the shape of curves, are selected by 
solving the system of nonlinear equations. Finally, the initial guess is obtained by substitut-
ing the calculated control points to Bézier curves. To validate the performance of the pro-
posed method, numerical simulations are conducted with respect to three kinds of orbits, 
which are from circular to highly elliptical orbit (HEO). The proposed method is compared 
to the general shooting method. The comparison results show that the initial guess calculat-
ed by Bézier curves makes finding the solution more efficient in terms of computational 
time and iterations. Also, it shows that the proposed method finds the solution for the HEO 
while the general shooting method fails to find the solution.  
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AAS 19-752 

IMPLEMENTING AN IDAN SPEYER CAUCHY DRAG ESTIMATOR 

Craig A. McLaughlin,* Micaela Crispin† and Frank J. Bonet‡ 

Recent work shows that drag related parameters can better be described by a Cauchy distri-
bution than a Gaussian. For this reason, an Idan Speyer Cauchy drag estimator is nested 
within an extended Kalman filter orbit determination process. The estimator is tested along 
the CHAMP satellite orbit and the drag acceleration measurements are calculated using 
CHAMP accelerometer-derived densities. In addition, the distribution of the density resid-
uals, defined as the difference between the accelerometer-derived density and the 
NRLMSISE-00 density, is examined to see if it better matches a Cauchy or Gaussian dis-
tribution.  
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AAS 19-754 

AN ESTIMATION-BASED DRAG COEFFICIENT MODEL FOR 
TRACKING VARIATIONS DUE TO ATTITUDE AND 

ORBITAL MOTION 

Vishal Ray* and Daniel J. Scheeres† 

In an earlier paper, we proposed dynamic drag coefficient models based on Fourier series 
expansions to capture variations in the drag coefficient. The body-fixed Fourier (BFF) 
model was developed to respond to changes in satellite orientation and the orbit-fixed Fou-
rier (OFF) model to respond to periodic variations in ambient parameters. In this work, we 
combine the advantages of both of these approaches to capture the fully varying drag coef-
ficient in the form of generic models called body-orbit double Fourier (BODF) and body-
orbit summation (BOS) models. We analyze the performance of these models for various 
attitude profiles in an elliptical orbit such that the drag coefficient varies both due to atti-
tude and ambient parameters. Additionally, biases in geomagnetic and solar activity are 
introduced in the filter density model to simulate density errors. We demonstrate improved 
performance of these models over the standard cannonball drag coefficient model used in 
literature through simulations and processing of real data. The proposed BODF model im-
proves the prediction performance by almost 50 % over the standard model for real data.  
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AAS 19-757 

ROOT LOCUS METHOD OF DETERMINING SENSITIVITY OF 
POLYNOMIAL SYSTEMS TO ERROR IN 

ASTRODYNAMICS APPLICATIONS 

Alex Sizemore,* Chris Ertl,† Troy Henderson,‡ David Zuehlke,§  
Heidi Darsey** and T. Alan Lovell†† 

This paper presents an investigation into the behavior of solutions to polynomial systems 
under the effects of uncertainty using the root locus method. The method is first investigat-
ed on a set of two second order polynomials. The method is then extended to the geoloca-
tion of a radio frequency transmitter from space-based receivers. By plotting the root loci, a 
better understanding is ascertained of the effects of various aspects of this problem, includ-
ing measurement error, receiver or observer location, and changes to design parameters.  
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AAS 19-775 

OPTIMAL QUADRATURE-BASED FILTERING IN REGULARIZED 
COORDINATES FOR ORBIT DETERMINATION 

David Ciliberto,* Puneet Singla,† Joe Raquepas‡ and Manoranjan Majji§ 

The development of quadrature-based filters for orbit determination and challenges associ-
ated with their implementations while using constrained regularized variables in astrody-
namics are discussed. Since the regularization process introduces redundant coordinates, a 
quadrature based method to explicitly account for the state constraints is developed. In par-
ticular, a non-product quadrature method known as the Conjugate Unscented Transfor-
mation is used for filter development. Numerical experiments are conducted to validate the 
developed filter and results are compared with linear error theory based filter such as the 
constrained Kalman filter.  
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AAS 19-781 

ANALYSIS OF RELATIVE MERITS OF UNSCENTED AND 
EXTENDED KALMAN FILTERS IN ORBIT DETERMINATION 

James Woodburn* and Vincent Coppola† 

The unscented and extended forms of the Kalman filter are compared in the context of orbit 
determination. Differences and similarities of the algorithms are identified with an empha-
sis on treatment of state-error uncertainty in the presence of uncertainty in the dynamics 
and measurement models. A hybrid filter which combines elements of both algorithms is 
proposed in search of an optimal combination of computational performance and accom-
modation of higher order effects during measurement processing. The filter variants are 
compared based on application to set of realistic orbit determination scenarios.  

[View Full Paper] 
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AAS 19-788 

LIGHT CURVE INVERSION OBSERVABILITY ANALYSIS 

Alex M. Friedman,* Siwei Fan* and Carolin Frueh† 

Resident space object (RSO) information beyond position and velocity is important for 
identification and accurate propagation. Measurements of most RSOs are non-resolved im-
ages, meaning details of object shape are not explicit in images. However, methods exist to 
recover shape information with light curve measurements from non-resolved images. The 
direct light curve inversion scheme consists of development of an Extended Gaussian Im-
age followed by solving the Minkowski problem. Observability notions and methods are 
applied to the EGI generation process, and time between measurements is varied to study 
how measurements can be efficiently generated for use in the light curve inversion scheme.  

[View Full Paper] 
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AAS 19-843 

GAUSSIAN MIXTURE FILTER ANGLES-ONLY ORBIT 
DETERMINATION USING MODIFIED EQUINOCTIAL 

OSCULATING ELEMENTS 

Mark L. Psiaki* 

A Gaussian mixture orbit determination filter is developed using a state vector that consists 
of equinoctial-like osculating elements. This new filter seeks to reduce the number of 
Gaussian mixture elements that are needed in order to accurately model the Bayesian poste-
rior distributions that apply to the angles-only orbit determination problem. The modified 
equinoctial elements replace the elements h and k, whose sum squared is bounded by 1. 
The two replacement elements are unbounded, and h and k can be determined from them. 
This modification allows the orbit determination filter to operate in an unbounded state 
space. The new state requires the development of a corresponding mixand covariance up-
per bound because such a bound is needed by the particular type of Gaussian mixture filter 
that is implemented. The upper bound is used in a mixture resampling algorithm in a way 
which ensures that extended Kalman filter calculations will be sufficiently accurate for 
each mixand’s computations. The resulting filter is able to reduce the required number of 
mixands from 5000 to 500 for angles-only orbit determination of a geosynchronous space-
craft.  
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AAS 19-845 

ROBUST PARTICLE FILTER FOR SPACE OBJECTS TRACKING 
UNDER SEVERE UNCERTAINTY 

Cristian Greco,* Lorenzo Gentile,† Massimiliano Vasile,‡ Edmondo Minisci,§ 
and Thomas Bartz-Beielstein** 

This paper presents a robust particle filter approach able to handle a set-valued specifica-
tion of the probability measures modelling the uncertainty structure of tracking problems. 
This method returns robust bounds on a quantity of interest compatibly with the infinite 
number of uncertain distributions specified. The importance particles are drawn and propa-
gated only once, and the bound computation is realised by inexpensively tuning the im-
portance weights. Furthermore, the uncertainty propagation is realised efficiently by em-
ploying an intrusive polynomial algebra technique. The developed method is finally ap-
plied to the computation of a debris-satellite collision probability in a scenario character-
ised by severe uncertainty.  
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AAS 19-849 

SENSOR CONFIGURATION TRADE STUDY FOR NAVIGATION IN 
NEAR RECTILINEAR HALO ORBITS 

Sehyun Yun,* Kirsten Tuggle,† Renato Zanetti‡ and Chris D’Souza§ 

Deep Space Gateway is a NASA program planned to support deep-space human explora-
tion and prove new technologies needed to achieve it. One of the Gateway requirements is 
to operate in the absence of communications with the Deep Space Network (DSN) for a 
period of at least 3 weeks. In this paper three types of onboard sensors (a camera for optical 
navigation, a GPS receiver, and X-ray navigation), are considered to enhance its autonomy 
and reduce the reliance on DSN. A trade study is conducted to explore alternatives on how 
to achieve autonomy and how to reduce DSN dependency while satisfying navigation per-
formance requirements. Using linear covariance analysis, the performance of a navigation 
system using DSN and/or the other sensors is shown.  
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AAS 19-862 

TRACK INITIATION FOR 
CUBESAT CLUSTER DEPLOYMENT TRACKING 

John A. Gaebler* and Penina Axelrad† 

A track initiation scheme is presented that efficiently generates initial conditions for new 
targets appearing in a surveillance region after a large-scale clustered deployment. Current-
ly in can take weeks for all CubeSats to be appear in the space catalog after such a deploy-
ment. This work assumes initial conditions are unknown and must be estimated from un-
correlated tracks in the presence of clutter. Pairs of radar-derived position vectors defining 
an orbit within a constrained admissible region are used to identify candidate targets via 
Lambert’s method. These targets are then processed with a Labeled Multi-Bernoulli filter. 
A simulation of the Planet Labs Flock 3 deployment is used to demonstrate the approach. 
Results indicate that the method is capable of finding all targets from the clustered deploy-
ment in the presence of false measurements in three days.  
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AAS 19-872 

CONSIDER FILTERING APPLIED TO MANEUVER DETECTION 
FOR RELATIVE ORBIT DETERMINATION 

Peter C. Scarcella,* Kirk W. Johnson† and Joshuah A. Hess‡ 

Determining the orbit of a non-cooperative maneuvering spacecraft in real time must bal-
ance computational efficiency with accuracy of the estimation. The Variable State Dimen-
sion (VSD) approach has been widely studied and applied to this problem using a variety of 
estimation schemes. Instead of merely adding random process noise to the thrust covari-
ance to help convergence, a Consider Kalman Filter is implemented to add the uncertainty 
in parameters related both to the quiescent system dynamics and to the maneuver dynamics 
to improve the fidelity of the solution. By adding the extra uncertainty from mildly observ-
able parameters related to the maneuver, this approach provides a low-computational-cost 
improvement over the nominal VSD for orbit determination of a non-cooperative space-
craft. Simulations are conducted for a continuously thrusting spacecraft with no a priori 
knowledge of the maneuver duration. Results have shown improved orbit and thrust esti-
mation when adding consider parameters to maneuver detection.  
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AAS 19-875 

MAXIMUM A POSTERIORI ESTIMATION OF HAMILTONIAN 
SYSTEMS WITH HIGH ORDER SERIES EXPANSIONS 

Simone Servadio,* Renato Zanetti† and Roberto Armellin‡ 

This paper presents a new approach to Maximum A Posteriori (MAP) estimation. Repre-
senting probability density functions through Taylor series expansions and using Differen-
tial Algebra techniques, this work proposes to derive the MAP estimate directly from high 
order polynomials. The new method is applied to the nonlinear Orbit Determination prob-
lem.  
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AAS 19-885 

AUTOMATED NAVIGATION ANALYSIS FOR THE LUCY MISSION 

Jeremy Knittel,* Dale Stanbridge† and Kenneth Williams‡ 

The Lucy interplanetary trajectory presents a computationally challenging numerical opti-
mization problem. The number of small body encounters presents an onerous navigation 
analysis process. Automating the trajectory targeting, statistical delta-v estimation, tracking 
data simulation and orbit determination process has increased the overall robustness of the 
navigation plan. These new techniques will enable rapid trade studies to be performed 
comparing different navigation concepts of operations. This work will highlight the new 
tools written and put into practice for Lucy and the methodology of automating much of the 
navigation analysis.  
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AAS 19-890 

ORBIT DETERMINATION AND TESTS OF GENERAL RELATIVITY 
IN THE CRUISE PHASE OF BEPICOLOMBO 

Luciano Iess,* Ivan di Stefano, Paolo Cappuccio and Gael Cascioli 

During its 6-year long cruise phase to Mercury, the ESA spacecraft BepiColombo will 
probe the laws of gravity during superior solar conjunctions. The Solar Conjunction Exper-
iment (SCE) goal is to constrain the value of the Parametrized Post Newtonian (PPN) pa-
rameter , which controls the space curvature produced by a massive body. Thanks to the 
state of the art microwave instrumentation of the Mercury Orbiter Radioscience Experi-
ment (MORE), the SCE will be able to improve the previous limits on  set by the Cassini 
spacecraft. Spacecraft tests of general relativity and alternative theories of gravity require 
excellent accuracies in range and range rate observables and an extremely stable platform. 
In the case of the MORE SCE non-gravitational accelerations induced by solar radiation 
pressure are, an important source of spacecraft buffeting. Those accelerations cannot be 
fully accounted for because of the random fluctuations of the solar irradiance, whose mag-
nitude is 0.1-0.01% of the average value. In this work we first characterize the effect of this 
dynamical noise on the outcome of the experiment, then we discuss a mitigation strategy 
based upon stochastic dynamical models, and finally we estimate a realistic uncertainty in 
the determination of the PPN parameter . 
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AAS 19-623 

INITIAL NEAR-EARTH OBJECT ACCESSIBILITY INSIGHTS FROM 
THE "NHATSchecker" UTILITY 

Daniel R. Adamo* 

The NHATSchecker utility is independently spawned from Near-Earth Object Human 
Space Flight Accessible Targets Study (NHATS, pronounced "gnats") software documen-
tation as a means to assess that software baseline's output reproducibility and to study ef-
fects from contemplated capability changes. Evaluating accessibility for specific near-Earth 
object destinations as examples, NHATSchecker processing provides multiple insights rel-
evant to NHATS users and software developers alike. Initial insights from these examples 
are documented herein.  
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AAS 19-641 

SPACECRAFT ASTEROID HOVERING USING UDWADIA-KALABA 
FORMULATION WITH TIME-VARYING COEFFICIENTS 

Wesley Stackhouse,* Morad Nazari,† Troy Henderson† and Tansel Yucelen‡ 

The dynamics and control of a spacecraft hovering over an asteroid are studied using the 
Udwadia-Kalaba (UK) constrained motion analysis and linear quadratic regulator (LQR). 
The equations of the constraints for a spacecraft to hover over an asteroid are derived for 
two hover scenarios: asteroid body-fixed hovering and hovering over a desired trajectory 
above the asteroid. For body-fixed hovering, the accelerations required to satisfy and main-
tain those constraints in the presence of gravitational perturbations of the asteroid are ob-
tained using the UK formulation and an optimal LQR controller. The results obtained by 
the two methods are compared in terms of the control signals and the integrated control ef-
fort for the same settling time envelope. The two methods are found to be equivalent in the 
maintenance of a body-fixed hover position. The second case of a hover trajectory is shown 
using the UK formulation only. The convenience of implementation of the UK technique is 
illustrated through both scenarios.  
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AAS 19-656 

AUTONOMOUS ARCHITECTURES FOR 
SMALL BODY EXPLORATION 

Daniel J. Scheeres* and Jay W. McMahon† 

Architectures for the autonomous exploration of a small body using a rendezvous space-
craft are studied. The approaches are inspired by the OSIRIS-REx mission, which will fo-
cus on placing the spacecraft into a stable orbit, and the Hayabusa2 mission, which will fo-
cus on controlling the spacecraft in a quasi-hovering state for an extended period of time. 
These different architectures will be analyzed in terms of necessary navigation measure-
ments and model estimation requirements, robustness of operations, and other criterion. 
The goal is to identify the relative advantages of each approach and to formulate appropri-
ate mission goals based on the architecture used.  
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AAS 19-676 

OSIRIS-REX NAVIGATION CAMPAIGN TRAJECTORY DESIGN 
AND MANEUVER PERFORMANCE 

Daniel R. Wibben,* Andrew Levine,* Samantha Rieger,†  
James V. McAdams,* Peter Antreasian,* Jason M. Leonard,* 

Michael C. Moreau† and Dante S. Lauretta‡ 

The first six months of asteroid proximity operations for the OSIRIS-REx mission is 
known as the Navigation Campaign – a portion of the mission designed to optimize initial 
characterization of asteroid Bennu and its dynamical environment in support of initial orbit 
insertion and transition from star-based to landmark-based optical navigation. During this 
time, the spacecraft executed 16 maneuvers across a large range of V magnitudes. This 
work discusses the spacecraft trajectory design of the Navigation Campaign, which enabled 
the collection of critical information that led to the achievement of these milestones, and a 
summary of the performance of executed maneuvers.  
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AAS 19-677 

OSIRIS-REX FROZEN ORBIT DESIGN AND FLIGHT EXPERIENCE 

Daniel R. Wibben,* Andrew Levine,* Samantha Rieger,† James V. McAdams,* 
Peter G. Antreasian,* Jason M. Leonard,* Michael C. Moreau†  

and Dante S. Lauretta‡ 

The OSIRIS-REx mission successfully entered a closed orbit around target asteroid Bennu 
for the first time on December 31, 2018. Due to the extremely low gravity of the asteroid, a 
specific orbit design was necessary to balance the perturbations provided from solar radia-
tion pressure in order to maintain spacecraft safety, meet mission requirements, and 
demonstrate orbit stability over a propagation period of several months. This paper de-
scribes the design for OSIRIS-REx’s record-setting orbit and the as-flown performance of 
the spacecraft while it remained in orbit for two months without need for orbit mainte-
nance.  
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AAS 19-678 

POSE AND SHAPE ESTIMATION OF A SMALL BODY VIA 
EXTENDED TARGET TRACKING 

Enrico M. Zucchelli,* Brandon A. Jones† and Ryan P. Russell‡ 

This paper describes a method to estimate shape and pose of a small celestial body with 
lidar measurements, and using only an extended Kalman filter. The shape of the small body 
is represented with a Gaussian Process, which naturally provides a continuous representa-
tion of the distance of the surface from the origin of the body and corresponding uncertain-
ty. The proposed method shows promising results, offering an RMSE of approximately 1% 
on the shape of 433 Eros with an initial prior for the shape of a sphere and 1-sigma uncer-
tainties of 10 degrees, 10 degrees, and 17 degrees per hour, on the spin axis declination, 
ascension, and spin rate respectively. The method converges for even larger initial uncer-
tainties, and is statistically verified with Monte Carlo simulations over a variation of sever-
al parameters.  
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AAS 19-708 

DYNAMICS OF A NON-RIGID ORBITAL SIPHON AT 
A NEAR-EARTH ASTEROID 

Andrea Viale,* Colin McInnes* and Matteo Ceriotti*  

The orbital siphon is a novel concept for propellantless payload transfer from the surface of 
a rotating body to orbit. In the context of asteroid mining, the orbital siphon represents an 
efficient solution to deliver mined material from the asteroid surface to an orbiting station 
for later processing or storage. The key idea is that the centrifugal-induced force exerted on 
a tether-connected chain of payload masses assembled from the surface of a rotating body 
can be large enough to pull the lower masses, to initialize an orbital siphon effect: new pay-
loads are connected to the chain while upper payloads are removed. In this paper, the dy-
namics of an orbital siphon anchored to two irregularly shaped near-Earth asteroids is in-
vestigated, along with the particle dynamics of the material being transport. The siphon is 
modelled as a closed chain of tether-connected buckets, kept taut by two pulleys, one at the 
asteroid surface and one attached to an orbiting collecting spacecraft. Buckets are filled 
with asteroid material, to be delivered to the collecting spacecraft. It is shown that the ir-
regularities of the gravitational field do not introduce instabilities to the orbital siphon sys-
tem. Without any braking mechanism required, the radial velocity of the siphon does not 
diverge but reaches a constant value at a steady-state. Moreover, it is shown that the siphon 
effect is still generated when the anchor moves on the asteroid surface, allowing the mining 
location to be moved without interrupting the flow of material to the collecting spacecraft.  
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AAS 19-709 

SENSITIVITY OF TRAJECTORIES TO MASS PARAMETERS IN 
THE RESTRICTED FULL THREE BODY PROBLEM 

Alex B. Davis* and Daniel J. Scheeres† 

In support of future missions to binary asteroids, such as DART and HERA, we study the 
sensitivity of spacecraft in the restricted full three body problem (RF3BP) to the mass pa-
rameters and geometry of the target binary system. The RF3BP is a dynamical model in 
which a massless spacecraft or particle orbits two arbitrary asymmetric mass distributions, 
in this case asteroids. Because of their complex shapes, the gravitational effect of the aster-
oids on one another and the spacecraft are modelled using a Legendre polynomial expan-
sion of their mass distribution, described by the inertia integrals of each body. To under-
stand the sensitivity of spacecraft trajectories to the many unknowns in such a system we 
derive the state transition matrix (STM) for the asteroid and spacecraft states as well as a 
mass parameter sensitivity matrix (MPSM) which maps the sensitivity of the full system 
state to the mass parameters. In combination the STM and MPSM are used to map the un-
certainty of the initial state of the system and the asteroid mass parameters into a full covar-
iance of the system dynamics along an integrated trajectory. Applying this method, we 
evaluate the information content of a sample set of trajectories in the 65803 Didymos sys-
tem, target of DART and HERA, as well as the 617 Patroclus system, a flyby target of 
LUCY.  
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AAS 19-714 

OSIRIS-REX ORBIT DETERMINATION PERFORMANCE DURING 
THE NAVIGATION CAMPAIGN 

Jason M. Leonard,* Jeroen L. Geeraert,† Brian R. Page,† Andrew S. French,† 
Peter G. Antreasian,‡ Coralie D. Adam,§ Daniel R. Wibben,**  

Michael C. Moreau†† and Dante S. Lauretta‡‡ 

The OSIRIS-REx mission Navigation Campaign consists of three sub-phases: Approach, 
Preliminary Survey, and Orbital A. Approach was designed for initial characterization of 
Bennu while matching Bennu’s heliocentric velocity. Preliminary Survey provided the first 
spacecraft-based estimate of Bennu’s mass. This phase consisted of five target flybys with 
a close approach distance of about 7 km. Orbital A was a two-month phase devoted to the 
Navigation Team learning the close proximity operations dynamics and environment 
around Bennu and transitioning from center-finding optical navigation to landmark feature-
based navigation. This paper provides a detailed summary of the orbit determination per-
formance throughout the Navigation Campaign.  
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AAS 19-738 

MULTI-ARC FILTERING DURING THE NAVIGATION CAMPAIGN 
OF THE OSIRIS-REX MISSION 

Andrew S. French,* † Jason M. Leonard,* Jeroen L. Geeraert,*  
Brian R. Page,* Peter G. Antreasian,* Michael C. Moreau,‡ Jay W. McMahon,† 

Daniel J. Scheeres† and Dante S. Lauretta§ 

The Navigation Campaign of the OSIRIS-REx mission consisted of three phases: Ap-
proach, Preliminary Survey and Orbital A. These phases were designed to optimize the 
initial characterization of Bennu’s mass, shape and spin state to support a safe orbit inser-
tion and a quick transition to landmark-based optical navigation tracking. The standard 
orbit determination filtering techniques used to navigate the spacecraft were unable to fit 
data from these three phases simultaneously due to numerical issues associated with the 
nonlinear dynamics and the long arc length. Consequently, a multi-arc filtering algorithm 
was implemented in order to combine the information from each of these arcs. Multi-arc 
solutions for Bennu’s spin state and gravity field are presented here.  
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AAS 19-756 

EARTH-MOON HALO ORBIT –GATEWAY OR TOLLBOOTH? 

David W. Dunham,* Kjell Stakkestad,† James V. McAdams,‡  
Anthony Genova§ and Jerry Horsewood** 

This paper describes some of the history that has resulted in NASA’s plans for a Lunar 
Gateway (or just Gateway), and how building it to become a Deep Space Transport 
(DST) could result in savings over the current plan. The paper also describes how a DST 
can reach a variety of interesting destinations from an Earth-Moon halo orbit. Robert 
Farquhar promoted a lunar halo orbit station in 1971 and 2004. His ideas were expanded 
upon by others to create what is now known as the Lunar Gateway. But a “Moon-direct” 
approach is more efficient if the goal is only exploration of the lunar surface. For human 
missions to Mars and near-Earth objects, a lunar halo orbit is a good high-energy perch 
for a reusable Deep Space Transport (DST) between missions. The Gateway might be 
changed to a DST; building only one maneuverable habitat instead of two provides large 
savings. A technique that we call Phasing Orbit Rendezvous (PhOR) is proposed for ex-
ploration by the DST, to transfer astronauts and supplies to it just before its departure 
from Earth to an interplanetary destination. PhOR might also be used for astronaut repair 
of space observatories that normally operate in the Sun-Earth L2 region.  
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AAS 19-761 

FAST ESTIMATION METHOD FOR TRAJECTORIES TO 
NEAR-EARTH ASTEROIDS 

Lorenzo Casalino,* Luigi Mascolo† and Alessandro Bosa‡ 

The paper presents a new approximate method for the estimation of minimum V and 
propellant consumption for electric propulsion missions to Near-Earth asteroids. The 
method is purely algebraic and therefore very fast, as integration of the equations of mo-
tion is not required. It is based on the decomposition of the propulsive effort into basic 
burns; each burn has a specific purpose (i.e., change of perihelion or aphelion distance). 
The effects and the cost of the basic burn arcs are evaluated for almost-circular orbits 
with small inclination changes. An approximate suboptimal control law, which was ini-
tially developed for continuous thrust maneuvers, is employed. In general, results show a 
very good accuracy, with errors below 10-15% of the propellant consumption. Larger er-
rors occur for specific combinations of the orbital parameters, when the plane change 
maneuver does not follow the expected scenario. Suggestions for improvements of the 
estimation method are highlighted, as the analysis of the results gives insight about the 
characteristics of missions to different NEAs.  
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AAS 19-762 

DESIGN AND RECONSTRUCTION OF THE HAYABUSA2 
PRECISION LANDING ON RYUGU 

S. Kikuchi,* F. Terui,* N. Ogawa,* T. Saiki,* G. Ono,* K. Yoshikawa,* Y. Takei,* 
Y. Mimasu,* H. Ikeda,* H. Sawada,* T. Morota,† N. Hirata,‡ N. Hirata,§  

T. Kouyama,** S. Kameda†† and Y. Tsuda*  

The Hayabusa2 spacecraft successfully landed on the asteroid Ryugu on February 22nd, 
2019. Because of the abundance of boulders, the touchdown operation required high ac-
curacy for spacecraft safety. This research, therefore, investigates a precision landing se-
quence using retroreflective marker tracking. The trajectory for the touchdown operation 
is computed based on a high-fidelity gravity model to minimize the landing error. This 
paper provides trajectory reconstruction results based on actual flight data. Consequently, 
it is demonstrated that a landing accuracy of 3 m can be achieved, resulting in the suc-
cessful touchdown.  
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AAS 19-819 

NASA GODDARD INDEPENDENT NAVIGATION RESULTS FOR 
OSIRIS-REX INITIAL ENCOUNTER AT BENNU 

Dolan E. Highsmith,* Jason C. Swenson,† Benjamin W. Ashman,†  
Jeffrey L. Small,* Andrew J. Liounis,† Kenneth M. Getzandanner,†  

Josh Lyzhoft,† Jennifer E. Donaldson,† David D. Rowlands,‡  
Erwan M. Mazarico,§ Michael C. Moreau,† Jason M. Leonard,**  
Coralie D. Adam,** Peter G. Antreasian,** Dante S. Lauretta†† 

Throughout the OSIRIS–REx initial encounter with asteroid Bennu, a variety of optical 
navigation and orbit determination processes were used in support of spacecraft opera-
tions. The OSIRIS–REx Flight Dynamics Team consists of engineers from KinetX Aero-
space, NASA Goddard Space Flight Center (GSFC), and the Aerospace Corporation 
working as an integrated team. While KinetX is responsible for a majority of the official 
navigation deliveries for operations, NASA personnel perform independent assessments 
of navigation performance with Goddard heritage tools, while also providing surge or 
backup support for operations. This paper describes the Goddard independent navigation 
effort and highlights results from the Approach, Preliminary Survey, and Orbital A mis-
sion phases.  
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AAS 19-871 

OPTICAL NAVIGATION FOR NEW HORIZONS’ FLYBY OF 
KUIPER BELT OBJECT (486958) 2014 MU69  

Derek S. Nelson,* Erik J. Lessac-Chenen,* John Y. Pelgrift,* 
Coralie D. Adam,* Frederic J. Pelletier,* Jeremy A. Bauman,* 
Michael J. Salinas,* Dale R. Stanbridge,* Joel T. Fischetti,* 

Peter J. Wolff,* John R. Spencer,† Simon B. Porter,† 
Marc W. Buie,† Mark E. Holdridge,‡ Harold A. Weaver,‡ 

Catherine B. Olkin† and S. Alan Stern†  

Due to relatively large a priori spacecraft to target uncertainties, optical navigation has 
played an integral role in the orbit determination and navigation of NASAs New Horizons 
spacecraft to its most recent target, Kuiper Belt Object (486958) 2014 MU69. Key functions 
of the New Horizons optical navigation process include observation planning, attitude de-
termination, planetary modeling, star and target centroiding, and other astrometric reduc-
tion techniques. These key functions as well as the approach and trajectory reconstruction 
optical navigation results and lessons from New Horizons flyby of 2014 MU69 are ex-
plored.  
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AAS 19-876 

EXPERIMENTAL FIELD TESTING AND CONFIRMATION OF 
PARTICLE SWARM OPTIMIZATION FOR AUTONOMOUS 

EXTRATERRESTRIAL SURFACE SEARCH AND EXPLORATION 

Gregory D. Hatfield,* Alexander E. Cook† and May-Win Thein‡ 

Recent public policy shift and the national push toward “boots on the ground” missions to 
the Moon and other extraterrestrial surfaces will require extensive onsite habitats and facili-
ties. Diverse resource requirements for any extraterrestrial habitation and the prohibitive 
cost and complexity of resource transportation away from Earth necessitate the gathering of 
resources from the inhabited surface. It is natural that preemptive prospection of various 
resources will be necessary for any habitation mission or extended exploration. Such pro-
specting missions would allow for immediate harvesting upon arrival and reduced payload 
requirements as a result. Previous work at the University of New Hampshire examined an 
autonomous methodology for the generic search mission on extraterrestrial surfaces via 
Particle Swarm Optimization (PSO). In this paper, the authors propose to apply the devel-
oped techniques to a fleet of ground-based robots as a proof of concept to demonstrate the 
efficacy of PSO as a search (i.e., prospecting) method for a prescribed area. (For testing 
practicality and without loss of generality, the robots are tasked to located peak terrain alti-
tudes.) Numerical simulations and field test results using various benchmark topological 
functions and Lunar/Martian surface data sets show that PSO is consistently able to correct-
ly determine the optimal (i.e., highest altitude) locations within the defined search space.  
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AAS 19-886 

NAVIGATION PREPARATIONS FOR A POSSIBLE BINARY 
SYSTEM DURING THE NEW HORIZONS EXTENDED MISSION 

Joel T. Fischetti, John Y. Pelgrift, Erik J. Lessac-Chenen, 
Jeremy A. Bauman, Derek S. Nelson, Fred J. Pelletier, 
Dale R. Stanbridge, Michael J. Salinas, Peter J. Wolff, 

and Bobby G. Williams* 

Mark E. Holdridge and Harold A. Weaver† 

John R. Spencer, Simon B. Porter, 
Marc W. Buie, Catherine B. Olkin, 

and S. Alan Stern‡ 

The New Horizons spacecraft recently completed the most distant close flyby in spaceflight 
history, at 43.3 AU from the sun, during its encounter with (486958) 2014 MU69, a Kuiper 
Belt Object (KBO). The image resolution necessary to determine whether MU69 was a 
single body or binary system was not attainable until days before encounter. This presented 
a challenge for navigation, as the mission needed to be prepared for the possible discovery 
and subsequent orbit determination of a binary system up until encounter. This paper pre-
sents the algorithm development, simulations, and results of operational readiness tests in 
preparation for a binary system.  
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AAS 19-887 

SPACECRAFT TRAJECTORY TRACKING AND PARAMETER 
ESTIMATION AROUND A SPLITTING CONTACT BINARY 

ASTEROID 

Tiago M. Silva,* Jean-Baptiste Bouvier,† Kathleen Xu,‡  
Masatoshi Hirabayashi§ and Koki Ho** 

Increasing interest in asteroid mining and in-situ resource utilization will lead to an increase 
in asteroid surface operations. The geophysical properties of asteroids are often unknown, 
many of which play a significant role in gravitational forces. Surface operations such as 
mining may significantly alter the asteroid’s structure or, in the case of contact binary as-
teroids, cause the asteroid to split depending on the rotational condition. The coupled prob-
lem of estimating unknown parameters of a splitting contact-binary system and controlling 
a spacecraft’s trajectory in the system’s vicinity is investigated. An indirect adaptive con-
trol scheme is utilized to simultaneously meet both objectives. The results are compared 
with the traditional 2-body controller and the improvement enabled by the proposed 
scheme is demonstrated.  
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AAS 19-639 

A UNIFIED FRAMEWORK FOR STATE-SPACE BASED 
RECOVERY OF MASS, STIFFNESS AND DAMPING MATRICES 

Minh Q. Phan,* Dong-Huei Tseng† and Richard W. Longman‡ 

This paper provides a unified framework to recover a structure mass, stiffness, and damp-
ing matrices from its identified state-space model. In previous formulations, position, ve-
locity, or acceleration measurements are treated as three separate cases where position 
measurement is mathematically the simplest yet the least practical, and acceleration meas-
urement is the most practical yet mathematically the most complicated. In this paper, we 
derive relationships to transform a model with any type of measurement to another with 
any other type of measurement thus allowing techniques developed for one type of meas-
urement to be translated to another type of measurement, thus offering a unified framework 
for all three types of measurements.  
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AAS 19-783 

VALIDATION OF SIMULATION OF SPACE NET DEPLOYMENT 
PHASE WITH PARABOLIC FLIGHT EXPERIMENT DATA 

Rachael Gold* and Eleonora M. Botta† 

A proposed solution to capture large debris is tether nets. This paper validates a simulator 
for the deployment of a net in space, implemented with the multibody dynamics simulation 
tool Vortex Dynamics. The dynamics of the simulated net, modeled with a lumped parame-
ter approach, is compared to data taken during a parabolic flight experiment. Results show 
good agreement between the trajectory of the net in the experiment and in the simulation, 
when residual gravitational and Coriolis acceleration are accounted for. These results imply 
that the simulator can be confidently used to study the deployment dynamics of nets in 
space.  
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AAS 19-793 

ROBUST OPTIMAL FUZZY SUN-POINT CONTROL OF A LARGE 
SOLAR POWER SATELLITE SUBJECT TO ACTUATORS 

AMPLITUDE AND RATE CONSTRAINTS 

Chokri Sendi,* Antonio Won† and Luke McCue‡ 

This paper focus on the control design for attitude stability of a large solar power spacecraft 
made of a rigid platform, transmitting antenna and a rotating reflector. The solar sail expe-
riences external disturbances due to the solar pressure, gravity-gradient moment, atmos-
pheric drag, magnetic torques, and model uncertainties. Therefore, one of the main features 
of the designed fuzzy controller is to be made robust to withstand uncertainties, disturb-
ances and to guarantee the Sun-pointing accuracy of the spacecraft. It should be noted that 
the designed controller stabilizes the attitude despite the fact that the spacecraft dynamic is 
subject to actuators amplitude and rate saturation. The proposed fuzzy controller is based 
on the Takagi-Sugeno (T-S) fuzzy model. The problem is formulated as a set of linear ma-
trix inequalities and utilizes the parallel distributed compensator to obtain the feedback 
gains. Numerical simulations are provided to measure the performance of the proposed 
controller.  
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AAS 19-794 

NLPAROPT: A PARALLEL NONLINEAR PROGRAMMING SOLVER 
- APPLICATIONS TO ASTRODYNAMICS RELATED OPTIMIZATION 

Ryne Beeson,* Patrick Haddox,† Samah Karim,‡ Bindu Jagannatha,§ 
Devin Bunce,** Kyle Cochran,†† Edgar Solomonik‡‡ and Alexander Ghosh§§ 

In this paper, we present ongoing research and development on a new parallel nonlinear 
programming solver, NLPAROPT, that is being developed by CU Aerospace with collabo-
ration from the University of Illinois at Urbana-Champaign. The solution of a nonlinear 
program is at the heart of many optimal control software packages; the result of a control 
transcription of the optimal control problem, using both direct or indirect approaches. 
Hence nonlinear programming solvers play a pivotal role in astrodynamics applications. 
Currently, all available (commercial or open source) nonlinear programming solvers are 
inherently serial, with trivial parallelism or parallelism that has not necessary been de-
signed holistically. With this paper, we present the overall architecture of NLPAROPT, 
discuss how structure from the dynamic optimization problem can be exploited and how 
users can best setup their problems from a robustness and numerical efficiency standpoint, 
and conclude with current results on spacecraft trajectory and control related optimization 
problems.  
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AAS 19-864 

DESIGN OF A DISTRIBUTED MODULAR ATTITUDE 
CONTROLLER FOR SPACECRAFT COMPOSED OF 

RECONFIGURABLE JOINED ENTITIES WITH 
COMPLIANT COUPLING 

Deepti M. Kannapan* 

We present a procedure for designing a simple distributed attitude control system for a re-
configurable spacecraft composed of joined entities, which are relatively rigid compared to 
the compliant interfaces between them. This problem is challenging due to flexible modes 
of the spacecraft, caused by the compliant interfaces, and inertial properties that take an 
ensemble of values as the spacecraft reconfigures. 

We frame the problem as: pre-selecting control parameters and mechanical properties of 
the interfaces to ensure stability and performance for an ensemble of required configura-
tions of the spacecraft, by identifying and designing for a bounding “worst-case” configura-
tion from the ensemble.  
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AAS 19-874 

CLOUD COMPUTING METHODS FOR 
NEAR RECTILINEAR HALO ORBIT TRAJECTORY DESIGN 

Sean M. Phillips* and Diane C. Davis† 

Complicated mission design problems require innovative computational solutions. As 
spacecraft depart from a proposed Gateway in a Near Rectilinear Halo Orbit (NRHO), re-
contact analysis is required to avoid risk of collision and ensure safe operations. Escape 
dynamics from NRHOs are governed by multiple gravitational bodies, yielding a trajectory 
design space that is exhaustively large. This paper summarizes the recontact analysis for 
departure from the NRHO and describes how the Deep Space Trajectory Explorer (DSTE) 
trajectory design software incorporates high performance cloud computing to compute and 
visualize the orbit design space.  
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AAS 19-891 

GTOC X: SETTLERS OF THE GALAXY PROBLEM DESCRIPTION 
AND SUMMARY OF THE RESULTS* 

Anastassios E. Petropoulos,† Eric D. Gustafson,‡  
Gregory J. Whiffen§ and Brian D. Anderson** 

The Global Trajectory Optimization Competition was inaugurated in 2005 by Dario Izzo of 
the Advanced Concepts Team, European Space Agency, as a means of fostering innovation 
in trajectory design and cross-fertilization with other fields. GTOC2 through GTOC9 were 
organized by the winning teams of the preceding GTOC editions. Keeping this tradition, 
the Outer Planet Mission Analysis Group and Mission Design and Navigation Section of 
the Jet Propulsion Laboratory organized the tenth edition of the competition, GTOC X. The 
futuristic problem posed may loosely be described as a “Settlers of the Galaxy” challenge, 
wherein trajectories must be designed for humanity to settle throughout the galaxy. After 
the release of the precise problem statement, the 73 registered teams had four weeks to 
work on the problem. Solutions were submitted to the competition website for automated 
verification and scoring on a leaderboard. A total of 42 teams returned solutions. In this 
paper we describe the GTOC X problem, and give an overview of the solutions and their 
verification and ranking. Six teams presented their work at a special GTOC X session of 
this Conference, including the winning team led jointly by the National University of De-
fense Technology and the Xi’an Satellite Control Center, both of China.  
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AAS 19-894 

GTOC X: SOLUTION APPROACH OF TEAM SAPIENZA-POLITO 

Alessandro Zavoli,* Lorenzo Federici,† Boris Benedikter,‡  
Lorenzo Casalino§ and Guido Colasurdo** 

This paper summarizes the solution approach and the numerical methods developed by the 
joint team Sapienza University of Rome and Politecnico di Torino (Team Sapienza-PoliTo) 
in the context of the 10th Global Trajectory Optimization Competition. The proposed 
method is based on a preliminary partition of the galaxy into several small zones of interest, 
where partial settlement trees are developed, in order to match a (theoretical) optimal star 
distribution. A multi-settler stochastic Beam Best-First Search, that exploits a guided multi-
star multi-vessel transition logic, is proposed for solving a coverage problem, where the 
number of stars to capture and their distribution within a zone is assigned. The star-to-star 
transfers were then optimized through an indirect procedure. A number of refinements, in-
volving settle time re-optimization, explosion, and pruning, were also investigated. The 
submitted 1013-star solution, as well as an enhanced 1200-point rework, are presented.  
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AAS 19-896 

GTOCX: METHODS AND RESULTS FROM THE HIT BACC TEAM 

Qi Ouyang, Yong Liu,* Pengfei Cao, Zichen Fan, Yabo Hu, Cunyan Xia,  
and Gang Zhang† 

This paper presents the methods proposed by the joint team of Harbin Institute of Technol-
ogy and Beijing Aerospace Control Center in the 10th Global Trajectory Optimization 
Competition (GTOCX). The task is divided into five problems, including the multiple-
impulse Lambert rendezvous problem of non-Kepler orbit, the multi-target flyby problem, 
the settlement scheme of mother ships and fast ships, the settlement scheme of the settler 
ship, and the optimization for propulsive velocity. The corresponding solving algorithms 
are provided. The best score of our team is 1167.42.  
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AAS 19-897 

GTOC-X: OUR PLAN TO SETTLE THE GALAXY (ESA-ACT) 

Dario Izzo,* Marcus Märtens,† Ekin Öztürk,‡ Mate Kisantal,§  
Konstantinos Konstantinidis,** Luís F. Simões,†† Chit Hong Yam‡‡  

and Javier Hernando-Ayuso§§ 

The 10th edition of the Global Trajectory Optimization Competition (GTOC-X) invited 
participants all over the world to compete against each other to design efficient missions 
with the goal to settle our galaxy. Leveraging concepts of interstellar space travel like gen-
erational ships, the participants were tasked to develop settlement plans as each newly set-
tled star system could spawn new settlement ships. This work presents the solution strate-
gies developed by the ESA-ACT during the month long competition. In particular, we un-
fold the mathematical structure of the objective function that demanded a uniform spread 
throughout the galaxy and discuss its implications. We describe a tree search that is able to 
grow settlement trees concurrently over time starting from multiple initial points. Further-
more, we deploy several techniques to rearrange already established settlement trees in or-
der to reduce the overall propulsive velocity change required.  

[View Full Paper] 
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AAS 19-898 

GTOCX: RESULTS AND METHODS OF TEAM 38 –  
TSINGHUA & XINGYI 

Zhibo E,* Di Wu,† Shiyu Chen,‡ Haiyang Li§ and Yu Song** 

This paper summarizes our computing methods and results of solving GTOCX problem. 
The GTOCX problem is referred to settlement of one hundred thousand suitable galaxy star 
systems during 90 million years. Solving such a large-scale problem requires tremendous 
amount of calculation. To overcome this difficulty, our team proposed a series of optimiza-
tion strategies based on genetic algorithms. First, we design a partitioning strategy to gen-
erate the initial set of settlement stars, which are settled by fast ships and mother ships. 
Then, a multiple phase optimization strategy based on genetic algorithm is proposed to 
generate substantial settlement stars. After that, in order to decrease the fuel consumption, a 
local optimization method is applied to exchange different transfers. Finally, fuel consump-
tion of all the transfers are optimized by NPSOL and PSO. The final score of our team’s 
results is 2070.53.  

[View Full Paper] 
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AAS 19-899 

GTOCX: RESULTS AND METHODS OF 
NATIONAL UNIVERSITY OF DEFENSE TECHNOLOGY 

AND XI’AN SATELLITE CONTROL CENTER 

Ya-Zhong Luo,1* Hong-Xin Shen,1†An-Yi Huang,‡ Tian-Jiao Zhang,§ 
Yue-He Zhu,** Zhao Li,§ Peng Shu,** Zhen-Jiang Sun,** Jian-Hui Li,§  

Zhen-Yu Li,†† Jian-Jun Shi,†† Bing Yan,†† Xiang-Nan Du†† and Zhen Yang‡‡ 

This paper describes the methods used and the results obtained by team NUDT&XSCC (a 
collaboration team between National University of Defense Technology and Xi’an Satellite 
Control Center) for the 10th edition of the Global Trajectory Optimization Competition. 
The resulting trajectory won the 1st place in the competition, achieving a final mission val-
ue of J = 3101.15. The methods used by our team are described. These methods mainly in-
clude star-targeting technique, allowing one to flyby 2 to 3 stars using a single impulse or 
two impulses; targets layout optimization technique, enabling one to select the targets to get 
optimal spatial distribution based on the insights into the ideal configuration; ant colony 
optimization, permitting one to construct feasible settlement trees for the selected optimal 
targets.  

[View Full Paper] 
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AAS 19-902 

SETTLER OF THE GALAXY: THE CSU SOLUTION TO GTOCX 

Chen Zhang,* Chi-hang Yang,† Hao Zhang,‡ Ren-yong Zhang,§  
Hao Peng** and Yang Gao†† 

This work describes the CSU’s solution to the GTOC-X. It is first noted that dynamics has 
several integrals and stars/spacecrafts move on invariant planes. Then galactic Lambert’s 
problem is formulated to compute the transfers between two arbitrary stars. An algorithm is 
presented to fast evaluate the reachability from a star to its neighborhood, via dynamics 
dimension reduction, line transfer approximation, shooting with analytic derivatives, etc. 
The settlement tree is constructed by a two-step approach. The first step is to obtain a good 
initial layout of the settled stars by randomizing flight times. The second step aims to im-
prove the score by locally changing the tree structure. Several strategies are developed, 
which are replacing nodes, regrowing branches and optimizing time of flight, respectively. 
The CSU team got the 6th place and the final score is 1111.01 points with about 1200 stars. 

[View Full Paper] 
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AAS 19-900 

GTOC X: QUESTION AND ANSWER FORUM* 

Anastassios E. Petropoulos† 

In this presentation slot, a question-and-answer forum was held to conclude the Special 
Session on the Tenth Global Trajectory Optimization Competition. The Global Trajectory 
Optimization Competition was inaugurated in 2005 by Dario Izzo of the Advanced Con-
cepts Team, European Space Agency, as a means of fostering innovation in trajectory de-
sign and cross-fertilization with other fields. GTOC2 through GTOC9 were organized by 
the winning teams of the preceding GTOC editions. Keeping this tradition, the Outer Planet 
Mission Analysis Group and Mission Design and Navigation Section of the Jet Propulsion 
Laboratory organized the tenth edition of the competition, GTOC X. The futuristic problem 
posed may loosely be described as a “Settlers of the Galaxy” challenge, wherein trajecto-
ries must be designed for humanity to settle throughout the galaxy. After the release of the 
precise problem statement, the 73 registered teams had four weeks to work on the problem. 
Solutions were submitted to the competition website for automated verification and scoring 
on a leaderboard. A total of 42 teams returned solutions. The Special Session was devoted 
to seven papers, one describing the competition and overall results, and six from the top 
ranked teams. The papers are included in the conference proceedings. The winning team, 
led jointly by the National University of Defense Technology and the Xi’an Satellite Con-
trol Center, both of China, is tentatively planning to host the next GTOC in early 2021, 
with the workshop at the ISSFD in April 2021 in China. 

Only an abstract was available for this presentation. 
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AAS 19-901 

GTOC X: TROPHY PRESENTATION* 

Anastassios E. Petropoulos† 

In this presentation slot, the GTOC floating trophy, as well as the GTOC X award plaque, 
were presented to Zichen Fan who accepted them on behalf of the winning team, led jointly 
by the National University of Defense Technology and the Xi’an Satellite Control Center, 
both of China. The Global Trajectory Optimization Competition was inaugurated in 2005 
by Dario Izzo of the Advanced Concepts Team, European Space Agency, as a means of 
fostering innovation in trajectory design and cross-fertilization with other fields. GTOC2 
through GTOC9 were organized by the winning teams of the preceding GTOC editions. 
Keeping this tradition, the Outer Planet Mission Analysis Group and Mission Design and 
Navigation Section of the Jet Propulsion Laboratory organized the tenth edition of the 
competition, GTOC X. The futuristic problem posed may loosely be described as a “Set-
tlers of the Galaxy” challenge, wherein trajectories must be designed for humanity to settle 
throughout the galaxy. After the release of the precise problem statement, the 73 registered 
teams had four weeks to work on the problem. Solutions were submitted to the competition 
website for automated verification and scoring on a leaderboard. A total of 42 teams re-
turned solutions. The Special Session was devoted to seven papers, one describing the 
competition and overall results, and six from the top ranked teams. The papers are included 
in the conference proceedings. The winning NUDT-XSCC team is tentatively planning to 
host the next GTOC in early 2021, with the workshop at the ISSFD in April 2021 in China.  

Only an abstract was available for this presentation. 
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AAS 19-612 

ASSESSING GEO AND LEO REPEATING CONJUNCTIONS USING 
HIGH FIDELITY BRUTE FORCE MONTE CARLO SIMULATIONS 

Luis Baars,* Doyle Hall† and Steve Casali‡ 

Probability of collision (Pc) estimates for Earth-orbiting satellites typically assume a tem-
porally-isolated conjunction event. However, under certain conditions two objects may ex-
perience multiple high-risk close approach events over the course of hours or days. In these 
repeating conjunction cases, the Pc accumulates as each successive encounter occurs. The 
NASA Conjunction Assessment Risk Analysis team has updated its “brute force Monte 
Carlo” (BFMC) software to estimate such accumulating Pc values for repeating conjunc-
tions. This study describes the updated BFMC algorithm and discusses the implications for 
conjunction risk assessment.  

[View Full Paper] 
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AAS 19-631 

DETERMINING APPROPRIATE RISK REMEDIATION 
THRESHOLDS FROM EMPIRICAL CONJUNCTION DATA USING 

SURVIVAL PROBABILITY METHODS 

Doyle T. Hall* 

Satellites sometimes maneuver before conjunctions to remediate the risk of an on-orbit col-
lision. Many missions use probability of collision (Pc) thresholds to decide when such ma-
neuvers should be performed. These thresholds tend to be conservative because of policies 
that require satellites survive their lifetimes without collision with high confidence (e.g., 
99.9%). This study presents a semi-empirical method to estimate remediation Pc thresholds 
that satisfy such lifetime risk requirements. The formulation combines survival probability 
analysis with empirical conjunction histories to estimate remediation thresholds as a func-
tion of satellite size, remaining on-orbit duration, lifetime collision probability limit, colli-
sion consequence, and other parameters.  

[View Full Paper] 
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AAS 19-632 

IMPLEMENTATION RECOMMENDATIONS AND USAGE 
BOUNDARIES FOR THE TWO-DIMENSIONAL PROBABILITY OF 

COLLISION CALCULATION 

Doyle T. Hall* 

The two-dimensional (2D) probability of collision ( ) estimation method relies on several 
assumptions that must be satisfied for accurate results. Monte Carlo analysis of ~44,000 
conjunctions indicates that 2D-  provides accurate estimates for most typical conjunc-
tions, but occasionally underestimates  significantly, indicating an assumption violation. 
A test to detect large-amplitude underestimation inaccuracies can be based on how much 
“offset-from-TCA” 2D-  values vary during a well-defined time interval bracketing clos-
est approach. The test successfully detects all large-amplitude 2D-  underestimations 
found to date, but with a high false-alarm rate. The analysis also provides implementation 
recommendations and usage boundaries for the 2D-  method. [View Full Paper]  
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AAS 19-652 

SATELLITE CONJUNCTION “PROBABILITY,” “POSSIBILITY,” 
AND “PLAUSIBILITY”: A CATEGORIZATION OF COMPETING 
CONJUNCTION ASSESSMENT RISK ANALYSIS PARADIGMS 

Matthew D. Hejduk* and Dan E. Snow† 

A number of different conjunction assessment (CA) risk analysis methods and metrics have 
been proposed in the critical literature, and they vary widely in purport and form. However, 
they tend to be proposed individually and episodically, so that it is difficult for a CA practi-
tioner to take stock of the possibilities, understand their fundamental differences, and make 
informed choices for their particular CA risk assessment enterprise. The present study 
seeks to collect the major proposals for risk assessment methods and parameters and organ-
ize them categorically, under the proposed divisions of “probability,” “plausibility,” and 
“possibility,” as well as formulate what appears for each to be its fundamental question 
and, where applicable, null hypothesis. This activity can, through a bottom-up approach, 
provide some of the building blocks for an overarching CA philosophy, as well as establish 
concepts and terminology potentially useful to the broader discussion of these topics.  

[View Full Paper] 
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AAS 19-668 

NASA CONJUNCTION ASSESSMENT RISK ANALYSIS UPDATED 
REQUIREMENTS ARCHITECTURE 

Lauri K. Newman,* Alinda K. Mashiku,† Matthew D. Hejduk,‡ 
Megan R. Johnson§ and Joseph D. Rosa** 

The NASA Conjunction Assessment Risk Analysis (CARA) program has been performing 
routine on-orbit satellite conjunction risk analysis for unmanned NASA spacecraft since 
2005, and has developed a robust operations procedure and set of recommended best prac-
tices for operational conjunction assessment. However, a number of recent developments in 
Space Situational Awareness and commercial space operations conduct, such as the immi-
nent deployment of much more sensitive space sensing systems and the launching of much 
larger satellite constellations, have begun to challenge these standard collision risk parame-
ters and calculations. In response CARA has pursued a multi-year evaluation initiative to 
re-examine risk assessment algorithms and techniques, to develop needed improvements, 
and to assemble analysis-based operational requirements. This paper gives an overview of 
the principal parts of the Conjunction Assessment (CA) risk analysis process used at 
CARA, outlines the technical challenges that each part presents, surveys the possible solu-
tions, and then indicates which particular solution is being recommended for NASA.  

[View Full Paper] 
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AAS 19-669 

AN OPERATIONAL ALGORITHM FOR 
EVALUATING SATELLITE COLLISION CONSEQUENCE 

Travis F. Lechtenberg* 

Risk is properly considered as the combination of likelihood and consequence; but con-
junction assessment has usually limited itself to the consideration of only collision likeli-
hood. When considered from an orbital regime protection perspective, the focus shifts to 
the question of the amount of debris that a collision might produce (the “consequence”). 
The present paper presents an operational algorithm for determining the expected amount 
of debris production should a conjunction result in a collision, and an assessment of the al-
gorithm’s fidelity against a database of characterized objects.  

[View Full Paper] 
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AAS 19-671 

MULTIVARIATE NORMALITY OF CARTESIAN-FRAMED 
COVARIANCES: EVALUATION AND OPERATIONAL 

SIGNIFICANCE 

Travis F. Lechtenberg* 

Collision avoidance relies on representative Cartesian uncertainty volumes in order to cal-
culate probabilities of collision. Among the potential shortcomings of a covariance matrix 
representation of state errors, the most worrisome is the coordinate mismatch between the 
Cartesian framework in which these matrices are distributed and the curvilinear path that 
satellite orbits actually follow. The present study compares curvilinear-based and Cartesian 
covariance representations for ~50,000 conjunctions to determine the frequency in which 
significant deviations from Gaussianity are observed, then compares the 2-D Pc result from 
the Cartesian covariance to a Monte Carlo Pc conducted in element space to assess opera-
tional significance.  

[View Full Paper] 
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AAS 19-702 

RECOMMENDED METHODS FOR SETTING MISSION 
CONJUNCTION ANALYSIS HARD BODY RADII 

Alinda K. Mashiku* and Matthew D. Hejduk† 

For real-time conjunction analysis (CA) operations, computation of the Probability of 
Collision (Pc) typically depends on the state vector, its covariance, and the combined 
hard body radius (HBR) of both the primary and secondary space objects. However, most 
algorithmic approaches that compute the Pc use generic conservatively valued HBRs that 
may tend to go beyond the physical limitations of both spacecraft, enough to drastically 
change the results of a conjunction assessment mitigation decision. On the other hand, if 
the attitude of the spacecraft is known and available, then a refined HBR can be obtained 
that could result in an improved and accurate numerically-computed Pc value. The goal 
of this analysis is to demonstrate the various number of different HBR calculation tech-
niques and the resulting calculated Pc values obtained, based on spacecraft orientations in 
the encounter or conjunction plane at the time of closest approach (TCA). Since in most 
conjunctions the secondary object tends to be a space debris object and thus orders of 
magnitude smaller than the primary, the greatest operational benefit is wrought by devel-
oping a better size estimate and representation for the primary object. We present an 
analysis that includes the attitude information of the primary object in the HBR calcula-
tion and evaluating the resulting Pc values for conjunction analysis and risk assessment 
decision-making. 
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AAS 19-697 

CALIBRATION OF ATMOSPHERIC DENSITY MODEL BASED 
ON GAUSSIAN PROCESS 

Tianyu Gao,* Hao Peng† and Xiaoli Bai‡ 

Neutral mass density is presently the predominant uncertain term among all the factors af-
fecting the atmospheric drag – the dominant perturbation force for space objects at low alti-
tude. The current best density estimation performance is often achieved by empirical mod-
els, which can be limited by their assumed, parametric formulations. This paper presents a 
density estimation framework that integrates information from empirical models, environ-
ment conditions, and satellite measurement data. Different from existing frameworks, the 
new integration mechanism is based on Gaussian Processes (GPs) which are nonlinear, 
non-parametric regression methods. Furthermore, the method will provide uncertainty 
quantifications in its estimates through GPs’ underlying Bayesian inference. Simulations 
are designed to test the hypothesis that the new framework is valuable to improve the per-
formance of the empirical models. Empirical models including NRLMSISR-00 and JB2008 
and accelerometer-inferred densities from satellite CHAMP are used for the study. The new 
method is shown to increase Pearson correlation coefficient (R) and reduce root mean 
squared error (RMSE) from the empirical models when the density estimation is tested on 
both the missing data and future densities, which are, respectively, within and following the 
GP’s training period. Together with providing quality uncertainty quantifications, the pro-
posed framework has the great potential to reduce the estimation errors from the empirical 
models and provide an effective means to estimate density for a satellite.  

[View Full Paper] 
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AAS 19-700 

DEEP IMITATION LEARNING AND CLUSTERING IN 
ASTRODYNAMICS 

Roberto Furfaro,* Kristofer Drozd,† Richard Linares,‡  
Brian Gaudet§ and Andrea Scorsoglio** 

This paper explores the use of deep-learning frameworks both for imitation learning (su-
pervised) and unsupervised methods applied to structure classification and understanding in 
CR3BP dynamics typically arising in astrodynamics. More specifically, the goal is to ex-
plore the use of deep architectures such as Convolutional Neural Networks (CNN) and 
Variational Autoencoders (VAE) to classify families of periodic orbits within and across 
CR3BP dynamics (e.g. Earth-Sun, Jupiter-Sun). It is demonstrated that CNNs are capable 
of capturing non-linear decision boundaries that enable distinctions between family of or-
bits. Importantly, VAEs are designed to model the distribution of data comprising periodic 
orbits. The key distributions parameters (mean and variance) are modeled using neural 
networks. Such parameters are then plotted on 2-D graph to visually evaluate the clustering 
of the orbits which enables classification. VAEs are also compared with non-linear, statisti-
cally-based dimensionality reduction methods (e.g. t-Distributed Stochastic Neighbor Em-
bedding or t-SNE) that project trajectory data in lower-dimensional embedding, while pre-
serving distance metrics. It is shown that individual families generate clusters that can be 
easily and visually distinguished in a 2-D plane. This study is an initial attempt to employ 
the features learned by deep networks in a data-driven fashion to better understand and 
identify dynamical structure arising in astrodynamics.  

[View Full Paper] 
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AAS 19-773 

NEURAL NETWORK BASED OPTIMAL CONTROL: 
RESILIENCE TO MISSED THRUST EVENTS 

FOR LONG DURATION TRANSFERS 

Ari Rubinsztejn,* Rohan Sood† and Frank E. Laipert‡ 

A growing number of spacecraft are adopting new and more efficient forms of in-space 
propulsion. One shared characteristic of these high efficiency propulsion techniques is their 
limited thrust capabilities. This requires the spacecraft to thrust continuously for long peri-
ods of time, making them susceptible to potential missed thrust events. This work demon-
strates how neural networks can autonomously correct for missed thrust events during a 
long duration low-thrust transfer trajectory. The research applies and tests the developed 
method to autonomously correct a Mars return trajectory. Additionally, methods for im-
proving the response of neural networks to missed thrust events are presented and further 
investigated.  

[View Full Paper] 
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AAS 19-776 

UNCERTAINTY CHARACTERIZATION AND SURROGATE 
MODELING FOR ANGLES ONLY INITIAL ORBIT DETERMINATION 

David Schwab,* Puneet Singla† and Joseph Raquepas‡ 

Initial orbit determination may be used to initialize object tracking and associate observa-
tions with a tracked satellite, but only if uncertainty information exists for the approximated 
orbit. While classical initial orbit determination algorithms only provide a point solution, 
uncertainty information may be inferred using deterministic sampling techniques. Along 
with uncertainty characterization, two statistical learning techniques are tested in their abil-
ity to approximate the orbit determination mapping: first, a polynomial approximation built 
from the statistical moments in the state space and second, Gaussian Process Regression.  

[View Full Paper] 
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AAS 19-784 

ADAPTIVE ONLINE LEARNING STRATEGY FOR  
POST-CAPTURE ATTITUDE TAKEOVER CONTROL OF 

NONCOOPERATIVE SPACE TARGET 

Yueyong Lyu,* Yuhan Liu,† Zhaowei Sun‡ and Guangfu Ma§ 

This paper investigates the problem of the post-capture attitude takeover control for partial 
constrained combined spacecraft, subject to the unknown dynamics of the noncooperative 
target. An online learning control strategy is developed for post-capture attitude stabiliza-
tion and maneuvering based on adaptive dynamic programming. The real-time inertia iden-
tification is avoided, while only I/O data is utilized to generate the control strategy. It is ca-
pable to adjust its parameters online over time under various working conditions, which is 
very suitable for the combined spacecraft with complex time-varying dynamics. Theoreti-
cal analysis and simulations are exhibited to validate the effectiveness of the proposed 
strategy.  
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AAS 19-813 

DEEP LEARNING APPLICATIONS TO 
ASTRODYNAMICS PROBLEMS 

Jordan Murphy* and Daniel Scheeres† 

This paper investigates the ability of deep learning to characterize and predict solutions to 
common astrodynamics problems by using a number of machine learning techniques. 
Training sets are developed by conventionally solving the problems, and, from these sets, 
predictions of results on the trajectories are made into the future. The accuracy of these 
techniques are compared with traditional methods.  
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AAS 19-830 

COVARIANCE FUSION STRATEGY OF GAUSSIAN PROCESSES 
COVARIANCE AND ORBITAL PREDICTION UNCERTAINTY 

Hao Peng* and Xiaoli Bai† 

The previously proposed machine learning (ML) approach can use the hidden relationship 
between the orbit prediction error and the available data to improve satellite orbit prediction 
accuracy. Bayesian inference techniques not only generate the ML-correction to the orbit 
prediction but also the covariance information about this correction. Previously, Gaussian 
Process (GP) models have been examined and found with good performance on both its 
output mean and covariance. In this paper, a fusion strategy that can combine the infor-
mation from GP models with that from the conventional extended Kalman filter (EKF) is 
proposed. Otherwise, the ML-correction is merely applied through replacing the EKF-
predicted state and covariance, which is not reasonable because the information from EKF 
and physical models have been completely abandoned and thus wasted. In the new fusion 
strategy, the ML-correction could be combined with physical knowledge more rationally 
and confidently. Simulation results show that, for most cases, the fused orbit prediction 
state and covariance are more accurate than those of the EKF, but more conservative than a 
pure substitution with the ML-correction. Some issues are also noticed and discussed dur-
ing analyzing.  
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AAS 19-840 

TOWARDS ROBUST LEARNING-BASED POSE ESTIMATION OF 
NONCOOPERATIVE SPACECRAFT 

Tae Ha Park,* Sumant Sharma* and Simone D’Amico† 

This work presents a novel Convolutional Neural Network (CNN) architecture and a train-
ing procedure to enable robust and accurate pose estimation of a noncooperative spacecraft. 
First, a new CNN architecture is introduced that has scored a fourth place in the recent Pose 
Estimation Challenge hosted by Stanford’s Space Rendezvous Laboratory (SLAB) and the 
Advanced Concepts Team (ACT) of the European Space Agency (ESA). The proposed ar-
chitecture first detects the object by regressing a 2D bounding box, then a separate network 
regresses the 2D locations of the known surface keypoints from an image of the target 
cropped around the detected Region-of-Interest (RoI). In a single-image pose estimation 
problem, the extracted 2D keypoints can be used in conjunction with corresponding 3D 
model coordinates to compute relative pose via the Perspective-n-Point (PnP) problem. 
These keypoint locations have known correspondences to those in the 3D model, since the 
CNN is trained to predict the corners in a pre-defined order, allowing for bypassing the 
computationally expensive feature matching processes. The proposed architecture also has 
significantly fewer parameters than conventional deep networks, allowing real-time infer-
ence on a desktop CPU. This work also introduces and explores the texture randomization 
to train a CNN for spaceborne applications. Specifically, Neural Style Transfer (NST) is 
applied to randomize the texture of the spacecraft in synthetically rendered images. It is 
shown that using the texture-randomized images of spacecraft for training improves the 
network’s performance on spaceborne images without exposure to them during training. It 
is also shown that when using the texture-randomized spacecraft images during training, 
regressing 3D bounding box corners leads to better performance on spaceborne images 
than regressing surface keypoints, as NST inevitably distorts the spacecraft’s geometric 
features to which the surface keypoints have closer relation.  
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AAS 19-873 

GAUSSIAN PROCESS MODELS FOR PRELIMINARY  
LOW-THRUST TRAJECTORY OPTIMIZATION 

Lieve Bouwman,* Yuxin Liu† and Kevin Cowan‡ 

Low-thrust trajectories can benefit the search for propellant-optimal trajectories, but in-
creases in modeling complexity and computational load remain a challenge for efficient 
mission design and optimization. In this paper, an approach for developing models utilizing 
Gaussian Process (GP) regression and classification is proposed to perform computational-
ly efficient optimization while obtaining acceptable accuracies for trajectories based on ex-
ponential sinusoid shaping. The goal of this work is to predict a combination of values of 
input variables which corresponds to a shape-based trajectory with the smallest total veloci-
ty increment ( V) or propellant mass fraction (Jm). A GP classification model is construct-
ed to assess whether a given combination of values of input variables corresponds to a fea-
sible trajectory. GP regression models are developed to predict the total V and Jm corre-
sponding to a combination of shape parameters, which can replace the required integration 
along the shape. In addition, advanced regression models are developed to predict the target 
values while requiring only three input parameters, thereby replacing the entire shape com-
putation. In order to develop a GP model that fits the problem at hand, the underlying func-
tions and parameters should be selected rationally. In this work, a novel model develop-
ment approach is proposed to ensure that the mean function, covariance function, likeli-
hood function, inference method, and hyperparameters, which dominate the performance of 
the models, are chosen rationally in terms of mean absolute percentage error (MAPE) and 
prediction time. Using this approach, GP models are developed and tested on transfer tra-
jectories from Earth to Mars and Ceres, and from Mars to Earth, and their performance, in 
terms of MAPE and prediction time, is compared to that of more common optimization 
techniques in combination with the exponential sinusoid and other shape-based methods. 
The results demonstrate that the computation time can significantly be reduced while 
achieving promising MAPE’s, especially when the goal is to locate regions of feasible or 
near-optimal trajectories. The proposed model development procedure is tested for robust-
ness, which provides confidence in the proposed approach. Furthermore, it is found that the 
models which map three input variables directly to a V or Jm value perform better than the 
ones trained with shape information, which demonstrates the strength of GP models as ap-
plied to low-thrust trajectory optimization.  
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AAS 19-628 

SEEKER-BASED ADAPTIVE GUIDANCE VIA  
REINFORCEMENT META-LEARNING APPLIED TO 

ASTEROID CLOSE PROXIMITY OPERATIONS 

Brian Gaudet,* Richard Linares† and Roberto Furfaro‡ 

Current practice for asteroid close proximity maneuvers requires extremely accurate char-
acterization of the environmental dynamics and precise spacecraft positioning prior to the 
maneuver. This creates a delay of several months between the spacecraft’s arrival and the 
ability to safely complete close proximity maneuvers. In this work we develop an adaptive 
integrated guidance, navigation, and control system that can complete these maneuvers in 
environments with unknown dynamics, with initial conditions spanning a large deployment 
region, and without a shape model of the asteroid. The system is implemented as a policy 
optimized using reinforcement meta-learning. The spacecraft is equipped with an optical 
seeker that locks to either a terrain feature, reflected light from a targeting laser, or an ac-
tive beacon, and the policy maps observations consisting of seeker angles and LIDAR 
range readings directly to engine thrust commands. The policy implements a recurrent net-
work layer that allows the deployed policy to adapt real time to both environmental forces 
acting on the agent and internal disturbances such as actuator failure and center of mass 
variation. We validate the guidance system through simulated landing maneuvers in a six 
degrees-of-freedom simulator. The simulator randomizes the asteroid’s characteristics such 
as solar radiation pressure, density, spin rate, and nutation angle, requiring the guidance 
and control system to adapt to the environment. We also demonstrate robustness to actuator 
failure, sensor bias, and changes in the spacecraft’s center of mass and inertia tensor. Final-
ly, we suggest a concept of operations for asteroid close proximity maneuvers that is com-
patible with the guidance system.  
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AAS 19-640 

VALUE ITERATION AND Q-LEARNING FOR OPTIMAL CONTROL 
BY HIGH DIMENSIONAL MODEL REPRESENTATION (HDMR) 

Minh Q. Phan* 

This paper describes how High Dimensional Model Representation (HDMR) can be used 
in Value Iteration for optimal control. Value Iteration is a reinforcement learning method 
that is closely related to Q-Learning. The relationship between Value Iteration, Q-Learning, 
model predictive control, and standard optimal control theory is explained. HDMR models 
a nonlinear function as a sum of dimensionally increasing functions. We employ a type of 
HDMR called cut-HDMR where the values of a function along multi-dimensional cuts are 
used to build the HDMR directly. Unlike other modeling methods such as artificial neural 
networks or basis functions, the representation is non-parametric and there are no parame-
ters to learn. The cut-HDMR is used to model both the value function and the optimal con-
troller.  
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AAS 19-680 

REINFORCEMENT LEARNING AND TOPOLOGY OF 
ORBIT MANIFOLDS FOR STATIONKEEPING OF 

UNSTABLE SYMMETRIC PERIODIC ORBITS 

Davide Guzzetti* 

This work investigates reinforcement learning (RL) as an algorithm for orbit stationkeeping 
within chaotic environments. We first consider maintenance of unstable symmetric periodic 
(USP) orbits within circular restricted three-body problem (CR3BP) dynamics. Because 
topology for USP orbit dynamics is largely understood, USP orbits may be a testing ground 
to explore maintenance strategies based on RL models. Existing stationkeeping algorithms, 
including Floquet mode and gradient-based optimal control, may also supply a reference 
for characterizing RL performance. Outlining fundamental RL mechanisms for orbit sta-
tionkeeping and describing their relation to existing orbit maintenance techniques will sup-
port similar applications within more complex scenarios.  
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AAS 19-692 

ELM-BASED ACTOR-CRITIC APPROACH TO 
LYAPUNOV VECTOR FIELDS RELATIVE MOTION GUIDANCE IN 

NEAR-RECTILINEAR ORBITS 

Andrea Scorsoglio* and Roberto Furfaro† 

In this paper, we present a new feedback guidance algorithm for autonomous docking ma-
neuvers in the cislunar environment. In particular, we propose a closed-loop optimal guid-
ance algorithm that is capable of taking path constraints and collision avoidance into ac-
count while being on a Near Rectilinear Orbit (NRO) around the L2 Lagrangian point in 
the Earth-Moon system. The algorithm is based on the Lyapunov vector field guidance 
where the acceleration command is derived from a desired velocity vector field. We use 
reinforcement learning to learn the shape of the field as a function of the state of the sys-
tem, allowing for increased flexibility in terms of constraint shapes and better performance 
in terms of fuel consumption with respect to classical Lyapunov vector field guidance.  
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AAS 19-703 

PREDICTING SATELLITE CLOSE APPROACHES USING 
STATISTICAL PARAMETERS IN THE CONTEXT OF 

ARTIFICIAL INTELLIGENCE 

A. Mashiku,* C. Frueh,† N. Memarsadeghi,‡ E. Gizzi,§  
M. Zielinski** and A. Burton†† 

In order to ensure a sustainable use of low earth orbit in particular and near Earth space in 
general, reliable and effective close approach prediction between space objects is key. Only 
this allows for efficient and timely collision avoidance. Space Situational Awareness (SSA) 
for commercial and government missions will be facing the rapidly growing amount of 
small and potentially less agile satellites as well as debris in the near Earth realm, such as 
the increase in CubeSat launches and upcoming large constellations. At the same time, 
space object detection capabilities are expected to increase significantly, allowing for the 
reliable detection of smaller objects, e.g. when the Air Force Space Fence radar becomes 
operational. In combination, the space object catalog is expected to increase tremendously 
in size, potentially challenging the use of current methods. In this paper, we introduce an 
investigative approach based on the latest capabilities in artificial intelligence in fostering 
the potential for fast and accurate close approach predictions. We consider the study of sta-
tistical and information theory parameters in contrast and complementary to the classical 
probability of collision computation alone, in order to determine the feasibility of reliably 
predicting close approaches.  
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AAS 19-751 

SPACECRAFT MANEUVER STRATEGY OPTIMIZATION FOR 
DETECTION AVOIDANCE USING REINFORCEMENT LEARNING 

Jason A. Reiter,* David B. Spencer† and Richard Linares‡ 

Spacecraft maneuvers are planned with operational objectives in mind, usually ranging 
from making up for orbit perturbations to maneuvering to avoid a possible collision. 
Though these areas have been researched in depth, performing maneuvers to avoid detec-
tion by sensors hasn’t been explored until recently. Reinforcement learning has been shown 
to be an effective method for optimizing a single detection avoidance maneuver for the 
purpose of avoiding detection. This work expands on that further by optimizing the maneu-
ver strategy itself that will result in a spacecraft continually avoiding detection through-out 
a desired time period given a nominal tasking strategy for the opposed sensor.  
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AAS 19-822 

CONTINGENCY PLANNING IN 
COMPLEX DYNAMICAL ENVIRONMENTS VIA 

HEURISTICALLY ACCELERATED REINFORCEMENT LEARNING 

Ashwati Das-Stuart* and Kathleen Howell† 

Unexpected events can cause a spacecraft to significantly deviate from its nominal path, 
leading to undesirable impacts on the mission. In such scenarios, the capability for rapid 
trajectory re-design is key for mission success. This investigation leverages a reinforcement 
learning strategy to automate the search for a transfer route to restore the overall mission 
goals after a spacecraft experiences a deviance in its thrusting capabilities during nominal 
operations. The route is computed by exploiting natural dynamical flows and accommodat-
ing spacecraft propulsive capabilities to construct an initial guess that is then transitioned to 
a continuous solution via traditional optimization techniques.  
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AAS 19-907 

ON THE CHOICE OF FILTFILT, CIRCULANT, AND CLIFF FILTERS 
FOR ROBUSTIFICATION OF ITERATIVE LEARNING CONTROL 

Tianyi Zhang* and Richard W. Longman† 

Iterative learning control (ILC) aims to converge to zero tracking error in control systems 
that perform the same task repeatedly. Spacecraft applications include making sensors per-
form high accuracy repeated scanning motions. The original aim is perfect tracking at all 
frequencies up to Nyquist frequency. This is in contrast to classical feedback control design 
that aims and sometimes struggles to achieve a desired bandwidth, the upper limit of rea-
sonable performance. Achieving zero tracking error at all frequencies pushes our ability to 
create sufficiently accurate models. High frequency parasitic poles or residual modes can 
destabilize the ILC learning process. Hence, a noncausal zero-phase frequency cut-off filter 
is needed for robustification to high frequency model error. The most obvious such filter 
Matlab filtfilt, uses a causal forward filter, then repeat the filtering backward in time on the 
result. Initial conditions both forward and backward are needed, producing transients at the 
start and the end of the filtered data set. These are unrelated to the frequency cutoff objec-
tive. A previous publication demonstrated that the Matlab initial condition choice at the 
time could cause instability of ILC. Two alternative filter approaches are presented here, a 
circulant filter, and a cliff filter. Various properties of the circulant filter are presented, and 
the appropriate initial conditions for use in forward-backward zero phase implementation 
are developed, solving the initial condition issue. What remains is a pure filter design im-
plementing the chosen steady state frequency response profile. The cliff filter picks the 
chosen profile to be ideal, i.e. zero phase with gain of unity in the passband, and gain of 
zero in the stopband. This filter addresses only the frequencies visible in the number of 
time steps in the finite time ILC problem. When used on longer data sets it does not have 
ideal performance at additional frequencies. But it is concluded that this is not an issue for 
the ILC problem. Future work will investigate if the cliff filter allows one to have the high-
est possible cutoff of the learning in the presence of high frequency model error. The rela-
tionship to the FIR filter design used in repetitive control will also be investigated, as well 
as the relationship to frequency sampling filter designs.  
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AAS 19-607 

MODELLING AND SIMULATION OF THE ADCS SUBSYSTEM FOR 
JY1-SAT 

Ahmad Fares* and Ahmad Bani Younes† 

In this paper, modelling and simulation of the attitude control subsystem for JY1Sat are 
presented. Three orthogonal magnetorquers with nominal dipole moment of 0.2 Am2 are 
used. Detumbling of the satellite is achieved by two axes actuation, whereas actuating the 
third axis can align the satellite with the magnetic field of Earth. B-dot controller is used as 
the control law and three axes magnetometer is used to provide Earth magnetic field meas-
urements. Performance of the control law with disturbance torques while maintaining low 
angular rates is verified by studying the implemented control algorithm. International Ge-
omagnetic Reference Field (IGRF) model is considered to obtain the magnetic measure-
ments for simulation purposes and J6 orbit propagator is considered to calculate the satellite 
position and velocity in the inertial and fixed frames. A case study on the attitude regula-
tion using Modified Rodrigues Parameters and Lyapunov control functions with reaction 
wheels as actuators for nanosatellites is also presented.  
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AAS 19-609 

RECURSIVE AND NON-DIMENSIONAL STAR-IDENTIFICATION 

Carl Leake* and Daniele Mortari† 

This paper describes two new algorithms to identify the stars observed by a wide field-of-
view star tracker. The first algorithm, called recursive, is proposed to perform the star 
identification process when the attitude angular variation is slow enough so that a pure 
spin dynamics well approximates the attitude dynamics between two subsequent observa-
tions. This actually is the most common scenario of three-axis stabilized spacecraft, when 
the star fields slowly change in subsequent observations. The second algorithm, called 
non-dimensional, is proposed when both the recursive Star-ID algorithm and the lost-in-
space algorithm (LISA)—used to initialize the recursive algorithm—fail because the star 
tracker focal length and optical axis offset values go beyond the nominal operational 
range. These variations may be caused by launch vibrations or orbital thermal transitions.  
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AAS 19-615 

PERFORMANCE IMPROVEMENTS FOR 
THE LUNAR RECONNAISSANCE ORBITER GYROLESS 

EXTENDED KALMAN FILTER 

Julie Halverson (formerly Thienel),* Oscar Hsu,† Philip Calhoun‡  
and Yohannes Tedla§ 

In late 2017, the laser intensity monitor (LIM) current began to decline on the Lunar Re-
connaissance Orbiter (LRO) miniature inertial measurement unit (MIMU). The MIMU 
was powered off in March 2018 and has only been used during extended eclipses, a pre-
eclipse orbit phasing maneuver, and critical momentum unloads. Science slews were sus-
pended, and the onboard extended Kalman filter (EKF) was disabled. A coarse rate was 
estimated through star tracker quaternion differentiation, and attitude was provided di-
rectly from a single star tracker. A complementary filter, combining the differentiated 
quaternions with the integrated acceleration derived from the attitude control torque, was 
developed, tested, and uploaded to the spacecraft in December 2018. The EKF has been 
enabled, using the complementary filter rate in place of the MIMU, and science slews are 
now being performed. This paper presents an overview of the complementary filter rate 
estimation and EKF changes, fault detection updates without the MIMU, and inflight per-
formance improvements.  
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AAS 19-620 

NEW CONTROL SCHEMES AND FLIGHT RESULTS OF 
WORLD’S SMALLEST SS-520 NO.5 FOR MICRO-SATELLITE 

Hirohito Ohtsuka, Naruhisa Sano, Masaru Nohara,*  
Yasuhiro Morita, Takahiro Ito, Takayuki Yamamoto and Hiroto Habu† 

ISAS/JAXA has successfully launched the micro-satellite “TRICOM-1R” by the world’s 
smallest orbit rocket “SS-520 No.5” from Uchinoura Space Center on February 3rd in 
2018. ISAS modified the existing sounding rocket SS-520 adding a small 3rd-stage solid-
motor and the attitude control system. It flies spinning for the attitude stabilization in the 
flight. Therefore, we devised the rhumb-line control system with a new scheme. This 
rhumb-line system has the high-performance functions; the high-preciseness, the high-
maneuver rate and the suppression of the unnecessary nutation angle generated at the 
RCS injection. This paper reports the development of the G&C system and the flight re-
sults.  
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AAS 19-629 

ORTHOGONAL RANGE SEARCHING IN N-DIMENSIONAL 
SPACES USING K-VECTOR 

David Arnas,* Carl Leake† and Daniele Mortari‡ 

This work focuses on the study of orthogonal range searching methodologies for static 
databases with multiple dimensions. To that end, a new algorithm is introduced, the n-
dimensional k-vector. This algorithm represents the evolution of the k-vector, a range 
searching method originally devised to solve the Star-Identification problem in wide 
field-of-view star trackers. The n-dimensional k-vector methodology is based on first 
identifying the most convenient order in which the dimensions of the problem should be 
assessed, and later using this information in a modified projection method to perform the 
search. Additionally, and in order to speed up the process, the algorithm uses a set of aux-
iliary databases that obtains an approximation of the searching range, and assess which 
approach will be the best to solve that search. This work includes a description of the 
methodology as well as a study of the algorithm performance in terms of speed compared 
with other common algorithms from the literature.  
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AAS 19-653 

TIME-VARYING FEEDBACK FOR ATTITUDE REGULATION IN 
PRESCRIBED FINITE-TIME 

Marcelino M. de Almeida* and Maruthi Akella† 

This paper introduces a feedback-based control law capable of steering the attitude of a 
fully-actuated rigid-body into a desired state (or trajectory) in prescribed finite time. In 
contrast with other finite-time methods in the literature, the stabilizing control law pre-
sented in this work does not depends on any knowledge of the inertia properties of the 
controlled rigid body and does not require to cancel nonlinear terms from the equations of 
motion, fulfilling the so-called self-reduction property of attitude regulation in control 
systems. Toward meeting this objective, we introduce a carefully chosen Lyapunov-like 
storage function that, in conjunction with our proposed time-varying control law, can be 
used to prove that the limit of the attitude error converges to the origin as time approach-
es the convergence time. We also demonstrate that convergence is guaranteed even in the 
presence of unknown bounded disturbances torques, and we extend the controller to ac-
commodate trajectory tracking by judicious addition of feed-forward terms.  
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AAS 19-654 

QUATERA: THE QUATERNION REGRESSION ALGORITHM 

Marcelino M. de Almeida,* Daniele Mortari,†  
Renato Zanetti‡ and Maruthi Akella§ 

This work proposes a batch solution to the problem of estimating fixed angular velocity 
using orientation measurements. Provided that the angular velocity remains constant, we 
show that the orientation quaternion belongs to a constant plane of rotation as time evolves. 
Motivated by this fundamental property, we are able to determine the angular velocity’s 
direction by estimating the quaternion plane of rotation. Under the small angle assumption 
on the attitude measurement noise, the plane of rotation is estimated by minimizing a con-
strained Total Least Squares cost function, and our algorithm produces a unique optimizing 
solution through a batch approach (no need for iterations). The angular velocity magnitude 
is estimated by projecting the measured quaternions onto the estimated plane of rotation, 
and then computing the least squares evolution of the quaternion angle in the plane. We 
derive certain important statistical properties of the problem, and draw parallels to the rela-
tively straightforward problem of estimating constant translational velocity from position 
measurements. We also perform a Monte Carlo analysis of the proposed algorithm, validat-
ing our method.  
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AAS 19-664 

EFFICIENT MAGNETIC ATTITUDE REGULATION 

Mohammed A. A. Desouky* and Ossama Abdelkhalik† 

A magnetometer is an important component in most spacecraft magnetic attitude control 
systems due to the need for magnetic field strength data to compute the control command. 
An alternate magnetic attitude control algorithm that eliminates the need for magnetome-
ters at some controller update cycles is proposed in this paper. By applying a magnetic 
torque on the spacecraft and measuring the resulting angular velocity, it is possible to esti-
mate the ambient magnetic field strength that resulted in this response. The Tikhonov regu-
larization approach is implemented to solve the singular magnetic torque system. The real 
test cases presented in this paper demonstrate the feasibility of using the proposed method 
in attitude change maneuvers.  
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AAS 19-665 

EFFICIENT B-DOT LAW FOR 
SPACECRAFT MAGNETIC DETUMBLING 

Mohammed A. A. Desouky* and Ossama Abdelkhalik† 

Magnetic detumbling using a B-dot control does not need angular velocity measurements. 
The magnetic dipole, however, is not guaranteed to be orthogonal to the magnetic field, 
especially as the angular velocity gets smaller during detumbling, resulting in a sub-optimal 
torque vector in the sense of minimum residual torque. This paper presents a new variant of 
the B-dot logic. By computing an equivalent angular velocity, based on the magnetic field 
data, it is possible to develop a control law that guarantees the magnetic dipole moment to 
remain in the plane orthogonal to the ambient magnetic field. Using Monte Carlo simula-
tions, the proposed B-dot control is compared to one of the B-dot laws in the literature that 
is featured by its fast detumbling maneuver time. The results show better performance in 
terms of the detumbling time and power consumption of the magnetic rods.  
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AAS 19-735 

SINGULARITY-FREE EXTRACTION OF A DUAL QUATERNION 
FROM FEATURE-BASED REPRESENTATION OF MOTION 

Daniel Condurache* 

The parameterization of a rigid-body motion can be done using multiple algebraic entities. 
A very important criterion when choosing a parameterization method is the number of al-
gebraic equations and variables. Recently, orthogonal dual tensors and dual quaternion 
proved to be a complete tool for computing rigid body displacement and motion parame-
ters. The present research is focused on developing new methods for recovering kinematic 
data when the state of features attached to a body during a rigid displacement is available. 
The proof of concept is sustained by computational solutions both for the singularity-free 
extraction of a dual quaternion from feature-based representation of motion and for the re-
covery algorithms of the dual quaternion and the dual Rodrigues vector.  
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AAS 19-741 

OPTIMUM MOMENTUM BIAS FOR 
ZERO-FEEDBACK REACTION WHEEL SLEWS 

Lara C. Magallanes* and Mark Karpenko† 

Unscented guidance can reduce the open-loop sensitivity to parametric and other uncertain-
ties and enable an accurate attitude maneuver to a target in the absence of feedback. The 
achievable open-loop sensitivity reduction depends on the magnitude and direction of the 
momentum bias of a reaction wheel attitude control system. In this paper, an unscented 
guidance problem is formulated for finding the optimum momentum bias to minimize the 
terminal pointing error for a large angle zero-feedback slew maneuver.  
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AAS 19-765 

OPPORTUNITIES AND LIMITATIONS OF ADAPTIVE AUGMENTED 
CONTROL FOR LAUNCH VEHICLE ATTITUDE CONTROL IN 

ATMOSPHERIC FLIGHT 

Domenico Trotta,* Alessandro Zavoli,† Guido De Matteis‡  
and Agostino Neri§ 

This paper investigates the benefits and the possible issues related to the use of an Adaptive 
Augmented Control system for launch vehicle attitude control in atmospheric flight. A 
time-frozen analysis is conducted, assuming a linear time-invariant model of the rocket rig-
id body dynamics plus flexibility and parasite TVC dynamics for two launch-vehicle con-
figurations, representative of a small launch vehicle and a large one, whose data are availa-
ble in literature. The AAC system architecture is recalled and critically analyzed. An auto-
matic gain tuning procedure is devised for the AAC adaptation gains, while refined tuning 
guidelines are provided for spectral damper filters. Effects of the AAC on the stability and 
robustness with respect to the baseline, that is non-augmented, controlled system are dis-
cussed by means of numerical simulations carried out in the time domain as well as using 
tools from linear system analysis in the frequency domain.  
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AAS 19-777 

ICESAT-2 PRECISION POINTING DETERMINATION 

Sungkoo Bae,* Ben Helgeson,† Michael James† and Jonathan Sipps†  

The Precision Pointing Determination (PPD) is a crucial component for the success of the 
ICESat-2 mission. It must accurately determine the direction of the laser beams fired to the 
Earth. Due to the serious performance issues in one of the main instruments, the actual PPD 
is conducted by a contingency plan. Based on various assessments, the current PPD suc-
cessfully meets the required accuracy goal. This paper describes ICESat-2 PPD at the Uni-
versity of Texas at Austin: preparation, adaptation, performance, and evaluation.  
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AAS 19-812 

ATTITUDE DETERMINATION STRATEGY BASED ON KALMAN 
FILTER FOR THE SPORT CUBESAT SCIENCE MISSION 

Kátia M. Santos,* André L. da Silva,† Willer G. Santos,‡ Valdemir Carrara,§ 
Charles Swenson,** Lidia H. S. Satok†† and Luis E. V. L. Costa‡‡ 

In this work, an attitude determination algorithm was developed for the 6U CubeSat satel-
lite model of the Scintillation Prediction Observation Research Task (SPORT) mission. 
The project is a cooperation among the US Space Agency (NASA), American universities, 
the National Institute for Space Research (INPE) and the Aeronautics Institute of Technol-
ogy (ITA). The work includes obtaining data from star, solar, magnetometer and gyro sen-
sors and, with them to carry out, the attitude estimation. One of the requirements of the 
mission is the accuracy of attitude determination, which is only satisfied by the star sensor. 
However, there are periods in which the star sensor does not have valid measures, there-
fore, there is a need to study methods to improve the attitude given by the solar sensor and 
magnetometer. Thus, the TRIAD algorithm, in addition to the Kalman Filter, were ana-
lyzed to achieve the most accurate result within the established requirement. It was con-
cluded that when the star sensor does not present valid measures, the analyzed case that 
fulfilled the requirements was the Kalman Filter with the TRIAD algorithm.  

[View Full Paper] 

 

 

 

                                                                 
* Undergraduate Student, Mechanical Engineering Department, Universidade Federal de Santa Maria (UFSM), Santa Ma-
ria/RS, Brazil. 
† Professor, Mechanical Engineering Department, Universidade Federal de Santa Maria (UFSM), Santa Maria/RS, Brazil. 
‡ Professor, Aerospace Systems Department, Instituto Tecnológico de Aeronáutica (ITA), São José dos Campos/SP, Bra-
zil. 
§ Professor, Aerospace Systems Department, Instituto Tecnológico de Aeronáutica (ITA), São José dos Campos/SP, Bra-
zil. 
** Professor, Department of Electrical and Computer Engineering, Utah State University (USU), Logan, Utah 84322 USA. 
†† Technical Coordinator, Aerospace Systems Department, Instituto Tecnológico de Aeronáutica (ITA), São José dos 
Campos/SP, Brazil. 
‡‡ Project Manager, Aerospace Systems Department, Instituto Tecnológico de Aeronáutica (ITA), São José dos Cam-
pos/SP, Brazil. 

297

http://www.univelt.com/book=7815


  

AAS 19-833 

RELATIVE POSITIONING AND TRACKING OF 
TETHERED SMALL SPACECRAFT USING OPTICAL SENSORS 

Yanjie Guo* and Brian C. Gunter† 

This study analyzes the attitude dynamics and tracking control system for an object at-
tached via tether to a primary small satellite using optical sensors. Requirements of the 
tracking system include body pointing of the main spacecraft to the tethered target, in addi-
tion to optimized sun pointing for maximum power generation from the primary space-
craft’s solar panels. This study uses the Tethering And Ranging mission of the Georgia In-
stitute of Technology (TARGIT) CubeSat mission as a case study, and presents results 
from a hardware-in-the-loop experimental simulation environment to show that a modified 
proportional-derivative controller with three reaction wheels can track the tethered object 
with a steady-state error of 4 degrees in 1 minute, given only relative position information, 
generated from an optical camera and sun sensor. The performance numbers given are di-
rectly dependent on the performance of the hardware such as the detecting camera, reaction 
wheels, and sun sensor. Additional experiments were designed to test the limitations and 
general performance of the algorithm under varying lighting conditions and target dynam-
ics.  
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AAS 19-844 

REACTION WHEEL FRICTION ANALYSIS FOR 
THE FERMI SPACECRAFT 

Ben Ellis,* Russell DeHart† and Julie Halverson‡ 

The Fermi Gamma-ray Space Telescope is a three-axis stabilized spacecraft in Low Earth 
Orbit. Responding to concerns about reaction wheel health raised by drag torque trending, 
this study calculates dry and viscous friction coefficients from Fermi’s reaction wheel te-
lemetry. This paper describes the methods used to obtain drag torques from telemetry and 
fit the resulting data to a friction model. Results obtained from 11 years of telemetry indi-
cate that the reaction wheel friction has been slowly growing.  
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AAS 19-877 

RELATIVE ATTITUDE REGULATION CONTROL USING 
ELECTROSTATIC TORQUES AND CYLINDRICAL MODELS 

John Galjanic,* Dongeun Seo† and Morad Nazari‡ 

A linear feedback control based on the minimum control energy approach is used to stabi-
lize the relative attitude of two spacecraft using electrostatic torque. This study uses the 
multi-sphere method of Reference [1] to model two identical spacecraft and regulate their 
relative attitude in a one-dimensional rotation, thus synchronizing their attitude responses. 
The novelty of this study is the modelling of two cylindrical spacecraft, as opposed to earli-
er studies which used one cylinder and one sphere. The results show that both the proposed 
linear feedback control using the minimum control energy approach and the time-varying 
LQR control method can feasibly control the system. Future work will consider three-
dimensional rotations and the optimal distribution of spacecraft charge to create the electro-
static torque.  
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AAS 19-884 

TWO NEW STABLE INVERSES OF DISCRETE TIME SYSTEMS 

Xiaoqiang Ji* and Richard W. Longman† 

The concept of bandwidth in feedback control systems is created to indicate up to what fre-
quency the system will produce an output roughly the same as the command. One would 
like to have control laws that make the output of a control system actually do what is com-
manded. The needed command can be calculated as a mathematical inverse problem, given 
the desired output, find the command input to produce it. The inverse problems considered 
here consider a finite time command, and ask for an input history to produce this command. 
Such problems need to be digital in the world, and the inverse problem for digital systems 
using a zero order hold input to a plant transfer function, result in unstable control action 
for a majority of systems in the world. There is an existing theory for stable inverses. It ap-
pends pre- and post-actuation, control inputs that are applied before the start and after the 
end of the finite time problem. Stable inverses developed by the authors and co-workers, 
instead leave one or a few initial time steps free, and produce zero error at all later times 
using a stable control action. This paper develops two new stable inverses that leave slight-
ly more time steps free at the start of the problem time interval. These eliminate all transi-
ents from the inverse problem solution. Numerical examples illustrate the inverse control 
laws.  
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AAS 19-927 

MAGNETORQUER-ONLY ATTITUDE CONTROL OF 
SMALL SATELLITES USING TRAJECTORY OPTIMIZATION 

Andrew Gatherer* and Zac Manchester*  

This paper presents a magnetorquer-only attitude control technique that utilizes trajectory 
optimization methods to circumvent the underactuated nature of satellite magnetic field 
interactions. Given a known orbit and desired attitude state, the method utilizes a nonlinear 
dynamics model and a fast constrained trajectory optimization solver based on differential 
dynamic programming to arrive at a nominal torque profile that respects the spacecraft’s 
actuator limitations. This nominal maneuver is then tracked using a time-varying linear-
quadratic regulator (LQR). To demonstrate the effectiveness and robustness of the pro-
posed control technique, closed-loop Monte-Carlo simulations are performed from a varie-
ty of orbits and initial conditions. Our method is shown to significantly outperform previ-
ous magnetorquer-only control schemes by offering convergence from large initial errors 
and fast slew rates that exploit the full performance capabilities of the actuators. Computa-
tional complexity of the method and future implementation in flight software onboard a 
CubeSat are also discussed.  
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AAS 19-935 

SECOND ORDER REPETITIVE CONTROL: 
EVALUATION OF STABILITY BOUNDARY AND DEVELOPMENT 

OF SUFFICIENT CONDITIONS 

Ayman F. Ismail,* Richard W. Longman,† Peiling Cui,‡ 
Zhiyuan Liu§ and Han Xu** 

Spacecraft often have vibrations from slight imbalance in control moment gyros, reaction 
wheels, or momentum wheels. Repetitive Control (RC) is an effective method to elimi-
nate the produced jitter, actively isolating fine pointing equipment from spacecraft vibra-
tions. The period of the disturbances is known since these rotations are being command-
ed, and a first order RC adjusts the command of a closed loop isolation system during the 
current period based on the error observed at the corresponding times in the previous pe-
riod, aiming to converge to zero tracking error. The frequency response of first order RC 
has narrow notches at the addressed frequencies having the given period, requiring accu-
rate knowledge of the disturbance period. With imperfect knowledge, or with fluctuations 
in the period, the performance is compromised. Second order repetitive control is a de-
sign that can reduce the sensitivity to period fluctuations. A disadvantage is the added 
stability complications. This paper focuses on second order RC, initially including data 
from two periods back. The approach developed here makes use of a partial fraction ex-
pansion, developed by the third author and her research group, that allows second order 
RC to use data only from one period back, with equivalent results as if it were using data 
from two periods back. It also allows for parallel processing if desired. Several contribu-
tions are made here to address the stability complications. An algorithm to evaluate the 
true stability boundary is presented. A general sufficient stability condition from previous 
literature is reviewed for comparison purposes. And a new sufficient stability condition is 
derived and then simplified to make it much easier to use and independent of the number 
of time steps in a period. The paper evaluates how close the sufficient conditions are to 
the true stability boundary and confirms the effectiveness of using multiple sufficient sta-
bility conditions as a design tool for second order RC. 
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AAS 19-616 

SPACEFLIGHT HAZARDS OF ESCAPE-VELOCITY-DOMAIN 
IMPACT EJECTA IN THE CR3BP 

M. M. Wittal* and R. J. Power† 

As a consequence of planned/proposed human lunar activity, the long-term effects of lunar 
debris and ejecta resulting from large-body (> 1000 kg) impacts on the lunar surface is in-
vestigated. The Escape-Velocity-Domain (EVD) ejecta behavior is characterized in terms 
of destination, duration in lunar orbit, and total displaced mass. Likewise, the amount of 
mass sent into geocentric orbit is also characterized and assessed as a function of impact 
location in terms of time, lunar latitude & longitude, and impact angle. Finally, a threat 
analysis is performed on critical assets in Earth and Lunar orbit such as the ISS, artificial 
satellite infrastructure, prospective lunar surface structures & equipment, and the Deep 
Space Gateway now under construction.  
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AAS 19-674 

TRACKING OF LARGE SATELLITE CONSTELLATIONS USING 
A PARTITIONED GLMB FILTER 

Benjamin L. Reifler* and Brandon A. Jones† 

Previously, tracking of large satellite constellations with the Generalized Labeled Multi-
Bernoulli (GLMB) filter was computationally intractable for myopic sensors, as the large 
number of unobserved targets at each step would lead to an exponentially increasing num-
ber of hypotheses. By partitioning the label space based on assumed independence between 
distant measurements, the overall tracking problem can be decomposed into smaller, trac-
table sub-problems. Using this technique, the GLMB filter is used to track a simulated con-
stellation containing thousands of satellites and observed by a limited number of myopic 
sensors.  
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AAS 19-707 

REAL-TIME THERMOSPHERIC DENSITY ESTIMATION VIA 
TWO-LINE-ELEMENT DATA ASSIMILATION 

David J. Gondelach* and Richard Linares† 

Inaccurate estimates of the thermospheric density are a major source of error in low Earth 
orbit prediction. In this work, we develop a reduced-order dynamic model for the thermo-
spheric density by computing the main spatial modes of the atmosphere and deriving a lin-
ear model for the dynamics. This model is then used to estimate the density using two-line 
element (TLE) data by simultaneously estimating the reduced-order modes and the orbits 
and ballistic coefficients of several objects using an unscented Kalman filter. Accurate den-
sity estimation using the TLEs of 15 objects is demonstrated and validated against CHAMP 
and GRACE accelerometer-derived densities. Finally, the use of the model for density 
forecasting is shown.  
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AAS 19-730 

MULTIPLE SMALL-SATELLITE SALVAGE MISSION SEQUENCE 
PLANNING FOR DEBRIS MITIGATION 

Guanwei He* and Robert G. Melton† 

A new and efficient method, using a heuristic optimization algorithm, is presented to find 
the minimal propellant consumption solution for multiple dysfunctional-satellite salvage 
mission sequence planning. The two-burn impulsive maneuver strategy is applied to simu-
late the transfer of the spacecraft. A space station serves as the refueling station of the 
spacecraft and the collection center for the dysfunctional satellites. An improved version of 
a genetic algorithm (GA) is applied to determine the optimal visiting sequence of the target 
satellites by minimizing the propellant consumption of the servicing spacecraft which 
transports all the satellites to the maintenance station. The transfer between two targets is 
represented by a simple model that contains only the planar changes and orbital maneuvers. 
The validity of this method has been proved for different types of orbits, and their corre-
sponding propellant consumption is provided.  
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AAS 19-807 

A TECHNIQUE FOR SPACE OBJECT CATALOG EVALUATION 

A. M. Segerman,* Z. J. Sibert,* 
F. R. Hoots† and P. W. Schumacher, Jr.‡ 

An ever-increasing number of non-U.S. governmental entities is collecting observations of 
orbiting objects, and constructing space object catalogs that are independent of the opera-
tional catalog maintained by Air Force Space Command. With this proliferation of catalog-
ing, it becomes necessary to evaluate the performance of the resulting orbit catalogs. Using 
the operational U.S. military catalog as a baseline reference, a simple yet robust method of 
evaluating alternative space object catalogs has been developed, focusing on catalog com-
pleteness, accuracy, and timeliness. A full description of the evaluation methodology is 
presented, along with a prototypical set of results.  

[View Full Paper] 
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AAS 19-841 

SPACECRAFT CONSTELLATION TRACKING AND MANEUVER 
ESTIMATION USING A GENERALIZED LABELED 

MULTI-BERNOULLI FILTER 

Nicholas Ravago* and Brandon A. Jones† 

As organizations seek to deploy large constellations, methods that can track large popula-
tions of maneuvering objects will be needed to ensure the safety of these systems and to 
nearby satellites. Current methods in maneuvering target tracking are reasonably effective 
but inefficient, especially when considering the scale of the space object tracking problem. 
This paper presents a multiple-model generalized labeled multi-Bernoulli filter that can al-
low single-target adaptive maneuvering target tracking algorithms to be applied to multi-
target tracking scenarios in a computationally efficient manner. This filter is applied to 
some simple test cases using an adaptive equivalent noise method to model maneuvers. The 
filter successfully tracks targets through maneuvers and provides informative estimates of 
the maneuver history.  
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AAS 19-889 

CHARACTERIZING THE INDIA ASAT DEBRIS EVOLUTION USING 
DIVERSE, COMPLEMENTARY TOOLS 

Daniel L. Oltrogge,* T.S. Kelso† and Timothy Carrico‡ 

This paper details the types of spacecraft fragmentation and subsequent debris cloud evolu-
tion models in use today, using the recent India ASAT intercept as a sample case to model 
the kinetic engagement, build representative scenarios of the resulting debris cloud, and 
further characterize the likelihood of a debris fragment being present anywhere in three-
dimensional space as a function of time. From such characterizations, additional derived 
data may be obtained, including an assessment of the “top 25” active satellites placed at 
highest temporal risk of secondary collision with debris fragments, the orbital lifetime ex-
pected for the fragment population, and the subsequently-affected orbital regimes.  
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AAS 19-910 

COLLISION PROBABILITY FOR 
PARALLELOGRAM CROSS SECTIONS 

Ken Chan* 

A closed-form analytical expression is obtained for computing the collision probability 
when the cross section is a parallelogram. It is based on the conversion of a parallelogram 
first to a rectangular and then into a circle, each with the same area and the same centroid. 
The approach involves using the concept of antipodal points so as to derive the analytical 
expressions expediently. The results so obtained agree to six or seven significant figures 
with detailed computations using realistic values of the covariance and miss distance of 
spacecraft encounters. The applications are for use with solar panels, solar sails and Com-
posite CubeSats faces when their collision cross sections are general parallelograms when 
viewed obliquely.  
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AAS 19-911 

COLLISION PROBABILITY FOR POLYGONAL CROSS SECTIONS 

Ken Chan* 

This paper deals with the formulation of analytical expressions for computing the collision 
probability when the cross section is any polygon whether it is convex or concave, simply 
connected region or even a multiply connected region. The approach is based fundamental-
ly on the conversion of a triangle into its equivalent parallelogram (defined as one having 
the same area and the same centroid). This conversion is especially interesting because it 
invokes concepts from group theory to enable the process and expedite the analysis. Since 
any polygon can be decomposed into a network of triangles, the totality of collision proba-
bilities obtained from all of them will analytically yield the collision probability of the po-
lygonal cross section. The intended application is for ambitiously deriving analytical ex-
pressions for the probability of an entire spacecraft colliding with space debris.  
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AAS 19-942 

EVALUATION OF THE 27 MARCH 2019 
INDIAN ASAT DEMONSTRATION 

Andrew J. Abraham* 

On 27 March 2019 India announced the successful demonstration of a Direct Ascent Anti-
Satellite (DA-ASAT) weapon. India claims their Kinetic Kill Vehicle hit Microsat-R and 
destroyed it in a responsible manner that limited the debris cloud lifetime to 45 days. The 
Aerospace Corporation’s Debris Analysis Response Tool (DART) is a predictive model 
that can estimate the debris created from ASAT intercepts and other breakup events. The 
tool utilizes the target mass, projectile mass, and relative velocity to statistically model de-
bris created from a fragmentation event. This report forensically evaluates India’s claim 
that the debris cloud will disperse and reenter in the weeks following the intercept.  
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AAS 19-600 

SPACE-BASED TARGET SEARCH METHODS USING AN OPTICAL 
SENSOR MODEL FOR SPACE SITUATIONAL AWARENESS 

Ryne Beeson,* Kento Tomita,† Onalli Gunasekara,†  
Andrew Sinclair‡ and Koki Ho§ 

This paper develops a space-based, target search-to-tracking framework that incorporates 
an optical sensor model. The framework is used for analysis of dynamic steering of a 
space-based optical sensor to search, detect, and track unknown space objects that have 
highly uncertain states. The analysis with the target search framework compares derived 
information-theoretic and maximum probability target search algorithms to efficiently 
characterize a target with large uncertainty. The optical sensor model for the target search 
framework simulates a square, two-dimensional camera frame that provides measurements 
for the estimation process and includes a clutter model to represent false alarm. The target 
search framework is evaluated with Monte Carlo Simulations using estimated real-world 
case parameters and provides results that offer an efficient and optimized initial target 
search and estimation performance for SSA.  
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AAS 19-603 

DATA-DRIVEN FRAMEWORK FOR SPACE WEATHER MODELING 
WITH UNCERTAINTY TREATMENT TOWARDS SPACE 

SITUATIONAL AWARENESS AND SPACE TRAFFIC 
MANAGEMENT 

Richard J. Licata,* Piyush M. Mehta† and Christina Kay‡ 

The Space Weather (SW) has a strong influence on satellite tracking, orbital decay, and 
collision avoidance in low Earth orbit (LEO). E.g., Satellite position Probability Density 
Functions (PDFs) essential for probability of collision, Pc, estimates are heavily dependent 
on drag. The uncertainty is caused mainly due to the state of the thermosphere which is a 
highly dynamic environment, strongly and readily influenced by SW. Therefore, accurate 
SW forecasts and associated uncertainty quantification are crucial for space situational 
awareness and space traffic management. This paper presents a new framework for the 
coupling of different SW dynamical systems that also accounts for uncertainty.  
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AAS 19-605 

COVARIANCE REALISM IS NOT ENOUGH 

J. Russell Carpenter* 

A great deal of effort has been put into improving the practice of space situational aware-
ness such that covariance data associated with predicted close approaches is more “realis-
tic.” However, “realistic” usually has meant “larger” and this presents a problem. In many 
cases, there exist multiple sources for predictive ephemerides, which may be fused to pro-
duce predictive states with smaller associated covariances. Ancillary to the fusion computa-
tion is the capability to assess consistency of the estimates. If actionable covariance infor-
mation becomes available, interval estimates for the miss distance provide a more informa-
tive alternative to collision probability for risk assessment.  
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AAS 19-720 

A NEW LOOK AT PREDICTIVE PROBABILITY OF COLLISION, 
PREDICTIVE MANEUVER TRADE SPACES AND THE 

PROBABILITY OF A MISSED MITIGATION* 

Mark A. Vincent† and Theodore Sweetser‡ 

The methods for calculating the 2-D Probability of Collision (Pc) are reviewed and then 
applied to two new applications. The first application is a simplification of a previously de-
veloped tool to calculate the predicted Pc that would result from a new observation of the 
satellite states. The second application is for the probability of detection of an actual satel-
lite collision. The latter application is discussed in the context of setting conjunction 
thresholds to meet lifetime risk requirements. Finally, progress on a new tool to produce 
predictive maneuver trade space plots incorporating the same algorithms used for predic-
tive Pc is presented.  
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AAS 19-846 

VERY LOW RESOLUTION SPACECRAFT RECOGNITION FOR 
CLOSE-RANGE RENDEZVOUS AND PROXIMITY OPERATIONS 

William A. Bezouska,* † Daniel J. Hernandez* and Ryan S. Williams*  

We present machine learning approaches for the identification of nearby spacecraft during 
proximity and rendezvous operations using very low resolution images. These images may 
include challenging illumination conditions such as shadowing or specular reflection. 
Spacecraft identification from a known set of spacecraft is conducted using convolutional 
neural networks trained on rendered low resolution images of the spacecraft. Both single-
view and multi-view models are explored. Results indicate that identification can be suc-
cessful for object as small as 20 pixels. Additionally, a simple super-resolution method is 
presented which exploits high accuracy attitude knowledge available on modern spacecraft.  
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AAS 19-858 

THE YORP EFFECT FOR TUMBLING DEFUNCT GEO SATELLITES 

Conor J. Benson* and Daniel J. Scheeres*  

The long-term rotational dynamics of retired and otherwise defunct satellites in geosyn-
chronous earth orbit (GEO) are not well understood. In this paper, we conduct a study of 
long-term defunct GEO satellite rotational dynamics in the non-principal axis (tumbling) 
regime, focusing particularly on the five well-documented GOES 8-12 satellites. Full dy-
namical models are developed using Euler’s equations of motion that account for the Yar-
kovsky-O’Keefe-Radzievskii-Paddack (YORP) effect (spin state evolution due to solar ra-
diation and thermal re-emission torques) and internal energy dissipation. 

Overall, the dynamics simulations yielded a number of interesting behaviors. First of all, 
there is a strong tendency for the tumbling satellite’s rotational angular momentum vector 
to track the sun. Also, it was found that the satellite can cycle between uniform rotation 
and tumbling with solar radiation torques alone, contrary to previous hypotheses that en-
ergy dissipation is also required. Long-term observations of the GOES 8 satellite suggest 
it is undergoing such tumbling cycles. Furthermore, the YORP modeling revealed transi-
ent resonant tumbling states where the satellite’s two fundamental rotation periods are 
commensurate (e.g. 1:1, 2:1). GOES 8 was likely in a resonant tumbling state in April 
2018. Accounting for internal energy dissipation, stable tumbling states with constant ki-
netic energy, angular momentum, and sun-tracking were found. In such states, the com-
peting influences of YORP and energy dissipation balance. Long-term observations of 
GOES 9 suggest it may be in a stable, sun-tracking tumbling state. 

Our findings have a number of significant implications. First of all, they indicate that de-
funct GEO satellite rotational dynamics have structure that is amenable to long-term pre-
diction. Also, the ubiquitous sun-tracking behavior in simulations may facilitate initial 
attitude determination for space debris. In addition, by correctly setting the end of life 
configuration and spin state, it may be possible to place a satellite in a stable tumbling 
state for easier removal or servicing in the future. Finally, sun-tracking, resonant tum-
bling states, and stable tumbling states have been previously identified in asteroid YORP 
and comet outgassing simulations. This suggests that defunct satellites could provide in-
sights about solar system small body dynamical evolution, which occurs on much longer 
timescales (months to years vs. 103 to > 109 years).  
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AAS 19-869 

NO FEEDBACK MULTI-SENSOR TASKING 

Bryan D. Little* and Carolin E. Frueh† 

Observations of resident space objects generated by sensors are the primary method of 
maintaining knowledge of the object states. This requires the coordination of multiple sen-
sors with different capabilities in an optimized manner. Information exchange and pro-
cessing induces time delay in a multi-sensor system that is longer than the time available to 
plan and start the sensor tasking step. Sometimes no communication is available at all dur-
ing the observation time span. This paper addresses the problem of optimizing in the ab-
sence of immediate feedback in a heterogeneous sensor network; an illustration is shown 
using TLE data in the geosynchronous region and two optical sensors with vastly different 
capabilities.  
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AAS 19-879 

DESIGN & DEVELOPMENT OF 
AN OPTIMIZED SENSOR SCHEDULING & TASKING PROGRAM 

FOR TRACKING SPACE OBJECTS 

David Shteinman,* Mark Yeo,† Alex Ryan,‡ 
James Bennett,§ Michael Lachut** and Scott Dorrington†† 

With a large and ever-growing number of resident space objects (RSOs) in orbit around the 
Earth, the efficient tasking of sensors is critical to track objects and maintain reliable state 
estimates of objects across a catalog. This paper describes a scheduler developed to task 
sensors in a way that maximizes the total utility of a sensor network, measured in terms of 
information gain, or the reduction in Rényi α-divergence of object state covariances. The 
program contains several features such as object prioritization, customizable propagators, 
and the capability to schedule both optical and laser sensors. The program has been fully 
implemented in C++ and can schedule a catalog containing over 20,000 objects (building 
up to 100,000 objects) with up to 6 sensors (building up to 72 sensors) in real-time. The 
scheduler is currently in use for catalog maintenance by the Space Environment Research 
Centre at its Mt Stromlo Facility in Canberra, Australia.  
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AAS 19-905 

COLLISION PROBABILITY OF COMPOSITE CUBESATS 
HOVERING IN LEADER-FOLLOWER CONFIGURATION 

Ken Chan,* Yuchen Xie† and Jingrui Zhang‡ 

Analytical expressions are obtained for computing the collision probability of a large Com-
posite CubeSats hovering in the close vicinity of another large Composite CubeSats in a 
Leader-Follower configuration. The composite is constructed from a large number of Uni-
tary CubeSats arranged in a cuboid volume. The study involves the modeling of the growth 
of a time-dependent probability density function over a period of time and the effects of 
that growth on the collision probability. Studies of collision probability as a function of 
time are performed in terms of the parameters: separation between neighboring orbiters, 
covariance size (different in three directions) and the size of the two cuboid CubeSat Com-
posites. It was found that certain combinations of parameters resulted in collision probabil-
ity curves which intersected and others did not. This curve-crossing phenomenon cannot be 
predicted in advance but must be demonstrated quantitatively by performing detailed com-
putations. This knowledge may be used to advantage in the design of distributed systems 
and in the orbital maintenance of their configuration. Moreover, the Principle of Scaling is 
used to obtain collision probabilities using the results obtained from a relatively small 
number of case studies so as to circumvent the effort to perform copious computer runs 
when the input parameters are changed. 
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INDEX TO ALL AMERICAN ASTRONAUTICAL SOCIETY PAPERS
AND ARTICLES 1954 - 1992

This index is a numerical/chronological index (which also serves as a citation index)
and an author index. (A subject index volume will be forthcoming.)

It covers all articles that appear in the following:
Advances in the Astronautical Sciences (1957 - 1992)
Science and Technology Series (1964 -1992)
AAS History Series (1977 - 1992)
AAS Microfiche Series (1968 - 1992)
Journal of the Astronautical Sciences (1954 -September 1992)
Astronautical Sciences Review (1959 - 1962)

If you are in aerospace you will want this excellent reference tool which covers the first
35 years of the Space Age.

Numerical/Chronological/Author Index in three volumes,

Ordered as a set:
Library Binding (all three volumes) $120.00;
Soft Cover (all three volumes) $90.00.

Ordered by individual volume:
Volume I (1954 - 1978) Library Binding $40.00; Soft Cover $30.00;
Volume II (1979 - 1985/86) Library Binding $60.00; Soft Cover $45.00;
Volume III (1986 - 1992) Library Binding $70.00; Soft Cover $50.00.

Order from Univelt, Inc., P.O. Box 28130, San Diego, California 92198.
Web Site: http://www.univelt.com
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AAS 19-636 The Effect of Small Forces on Juno Orbit Determination During the Orbit Phase, 
   Yu Takahashi, Brian Rush and Paul Stumpf (Part III) 

AAS 19-637 Design and Control of Spacecraft Trajectories in the Full Restricted Three Body 
   Problem, Isabelle Jean, Arun K. Misra and Alfred Ng (Part I) 

AAS 19-638 The Development of an Open-Loop Angular Momentum Unload Methodology for 
   the Lunar Reconnaissance Orbiter and of Algorithms to Predict System 
   Performance, Russell DeHart (Part III) 

AAS 19-639 A Unified Framework for State-Space Based Recovery of Mass, Stiffness and 
   Damping Matrices, Minh Q. Phan, Dong-Huei Tseng and Richard W. Longman 
    (Part III) 
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AAS 19-640 Value Iteration and Q-Learning Optimal Control By High Dimensional Model 
   Representation (HDMR), Minh Q. Phan (Part IV) 

AAS 19-641 Spacecraft Asteroid Hovering Using Udwadia-Kalaba Formulation with  
   Time-Varying Coefficients, Wesley Stackhouse, Morad Nazari, Troy Henderson 
   and Tansel Yucelen (Part III) 

AAS 19-642 Long-Term Survey of LAMR and HAMR Objects Using Analytic Techniques, 
   Smriti Nandan Paul, Bryan D. Little and Carolin Frueh (Part II) 

AAS 19-643 Cis-Lunar Navigation Accuracy Using Optical Observations of Natural and 
   Artificial Targets, Nicholas Bradley, Zubin Olikara, Shyam Bhaskaran and  
   Brian Young (Part III) 

AAS 19-644 Navigation Models for Psyche Electric Propulsion Uncertainty, Nicholas Bradley, 
   John Steven Snyder, Drew Ryan Jones, Denis Trofimov and Dayung Koh  
   (Part II) 

AAS 19-645 Characterization of Candidate Vehicle States for XNAV Systems, Kevin G. Lohan 
   and Zachary R. Putnam (Part I) 

AAS 19-646 to -647  Not Assigned 
AAS 19-648 Constellation Planning Methods for Sequential Spacecraft Rendezvous Using 
   Multi-Agent Scheduling, Skylar A. Cox, Nathan B. Stastny, Greg Droge and 
   David K. Geller (Part I) 

AAS 19-649 Optical Methods for Finding New Natural Satellites of the Solar System’s Outer 
   Planets, Paul McKee, William Parker and John Christian (Part I) 

AAS 19-650 Sun Search Design for the Psyche Spacecraft, Daniel Cervantes, Peter C Lai, 
   Alex Manka, Aditi Ratnaparkhi and Eric Turner (Part I) 

AAS 19-651 Desensitized Optimal Attitude Guidance for Differential-Drag Rendezvous, 
   Andrew Harris, Ethan Burnett and Hanspeter Schaub (Part I) 

AAS 19-652 Satellite Conjunction “Probability,” “Possibility,” and “Plausibility”: A 
   Categorization of Competing Conjunction Assessment Risk Analysis Paradigms, 
   Matthew D. Hejduk and Dan E. Snow (Part IV) 

AAS 19-653 Time-Varying Feedback for Attitude Regulation in Prescribed Finite-Time, 
   Marcelino M. de Almeida and Maruthi Akella (Part IV) 

AAS 19-654 Quatera: The Quaternion Regression Algorithm, Marcelino M. de Almeida, 
   Daniele Mortari, Renato Zanetti and Maruthi Akella (Part IV) 

AAS 19-655 The Evolution of Deep Space Navigation: 2009-2012, Lincoln J. Wood (Part I) 

AAS 19-656 Autonomous Architectures for Small Body Exploration, Daniel J. Scheeres and 
   Jay W. McMahon (Part III) 

AAS 19-657 Solar Radiation Pressure Effects on the Orbital Motion at SEL2 for the James 
   Webb Space Telescope, Ariadna Farres and Jeremy Petersen (Part I) 

AAS 19-658 Not Assigned 
AAS 19-659 Analysis of a Particle Swarm Optimizer of Space-Based Receivers for 
   Geolocation Using Heterogeneous TDOA, David Lujan, T. Alan Lovell and  
   Troy Henderson (Part I) 

AAS 19-660 Not Assigned 
AAS 19-661 High-Fidelity Multiple-Flyby Trajectory Optimization Using Multiple Shooting, 
   Donald H. Ellison and Jacob A. Englander (Part II) 
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AAS 19-662 Constrained Energy-Optimal Guidance in Relative Motion Via Theory of 
   Functional Connections and Rapidly-Explored Random Trees, Kristofer Drozd, 
   Roberto Furfaro and Daniele Mortari (Part I) 

AAS 19-663 Multi-Sensor Management Under Information Constraints, Kirsten Tuggle and 
   Maruthi Akella (Part I) 

AAS 19-664 Efficient Magnetic Attitude Regulation, Mohammed A. A. Desouky and  
   Ossama Abdelkhalik (Part IV) 

AAS 19-665 Efficient B-Dot Law for Spacecraft Magnetic Detumbling,  
   Mohammed A. A. Desouky and Ossama Abdelkhalik (Part IV) 

AAS 19-666 to -667  Not Assigned 
AAS 19-668 NASA Conjunction Assessment Risk Analysis Updated Requirements 
   Architecture, Lauri K. Newman, Alinda K. Mashiku, Matthew D. Hejduk,  
   Megan R. Johnson and Joseph D. Rosa (Part IV) 

AAS 19-669 An Operational Algorithm for Evaluating Satellite Collision Consequence,  
   Travis F. Lechtenberg (Part IV) 

AAS 19-670 Not Assigned 
AAS 19-671 Multivariate Normality of Cartesian-Framed Covariances: Evaluation and 
   Operational Significance, Travis F. Lechtenberg (Part IV) 

AAS 19-672 to -673  Not Assigned 
AAS 19-674 Tracking of Large Satellite Constellations Using a Partitioned GLMB Filter, 
   Benjamin L. Reifler and Brandon A. Jones (Part IV) 

AAS 19-675 Theory of Functional Connections Applied to Nonlinear Programming Under 
   Equality Constraints, Daniele Mortari, Tina Mai and Yalchin Efendiev (Part II) 

AAS 19-676 OSIRIS-REx Navigation Campaign Trajectory Design and Maneuver 
   Performance, Daniel R. Wibben, Andrew Levine, Samantha Rieger,  
   James V. McAdams, Peter Antreasian, Jason M. Leonard, Michael C. Moreau 
   and Dante S. Lauretta (Part III) 

AAS 19-677 OSIRIS-REx Frozen Orbit Design and Flight Experience, Daniel R. Wibben, 
   Andrew Levine, Samantha Rieger, James V. McAdams, Peter G. Antreasian, 
   Jason M. Leonard, Michael C. Moreau and Dante S. Lauretta (Part III) 

AAS 19-678 Pose and Shape Estimation of a Small Body Via Extended Target Tracking, 
   Enrico M. Zucchelli, Brandon A. Jones and Ryan P. Russell (Part III) 

AAS 19-679 Geometric Formations Using Relative Orbital Elements and Artificial Potential 
   Functions, Sylvain Renevey and David A. Spencer (Part I) 

AAS 19-680 Reinforcement Learning and Topology of Orbit Manifolds for Stationkeeping of 
   Unstable Symmetric Periodic Orbits, Davide Guzzetti (Part IV) 

AAS 19-681 The Long-Term Forecast of Station View Periods for Elliptical Orbits,  
   Andrew J. Graven and Martin W. Lo (Part I) 

AAS 19-682 Aerobraking Trajectory Control Using Articulated Solar Panels, G. Falcone and  
   Z. R. Putnam (Part III) 

AAS 19-683 Not Assigned 
AAS 19-684 Analytic Approximations of Orbit Geometry in a Rotating Higher Order Gravity 
   Field, Ethan R. Burnett and Hanspeter Schaub (Part II) 
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AAS 19-685 Desensitized Optimal Spacecraft Rendezvous Control with Poorly Known 
   Gravitational and Solar Radiation Pressure Perturbations, Ethan R. Burnett, 
   Andrew Harris and Hanspeter Schaub (Part I) 

AAS 19-686 Constructing a Set of Motion Primitives in the Circular Restricted Three-Body 
   Problem Via Clustering, Thomas R. Smith and Natasha Bosanac (Part II) 

AAS 19-687 A Framework for Scaling in Filtering and Linear Covariance Analysis,  
   Christopher D’Souza, Renato Zanetti and David Woffinden (Part I) 

AAS 19-688 Optimal Low-Thrust Gravity Perturbed Orbit Transfers with Shadow Constraints, 
   Robyn Woollands and Ehsan Taheri (Part II) 

AAS 19-689 Independent Navigation Team Orbit Determination Estimation of 2014 MU69 for 
   New Horizons’ Kuiper Belt Object Flyby, Dylan R. Boone, Dianna Velez,  
   Shyam Bhaskaran, Gerhard Kruizinga, Declan Mages, Jeffrey Stuart,  
   William Owen, J. Ed Riedel, Jonathon Smith and Jeffrey Parker (Part III) 

AAS 19-690 Launch Opportunity Analysis of GEO Transfer with High Inclination Using Lunar 
   Gravity Assist, Su-Jin Choi, John Carrico, Mike Loucks, Hoonhee Lee and  
   Se-Jin Kwon (Part II) 

AAS 19-691 Not Assigned 
AAS 19-692 Elm-Based Actor-Critic Approach to Lyapunov Vector Fields Relative Motion 
   Guidance in Near-Rectilinear Orbits, Andrea Scorsoglio and Roberto Furfaro 
   (Part IV) 

AAS 19-693 Not Assigned 
AAS 19-694 Through the Looking Glass: Mission Design Using Interactive and Immersive 
   Visualization Environments, Jeffrey Stuart, Amos Byon, Alex Menzies, Try Lam, 
   Brent Buffington, and Sonia Hernandez (Part II) 

AAS 19-695 Not Assigned 
AAS 19-696 High-Energy Lunar Capture Via Low-Thrust Dynamical Structures,  
   Andrew D. Cox, Kathleen C. Howell and David C. Folta (Part I) 

AAS 19-697 Calibration of Atmospheric Density Model Based on Gaussian Process,  
   Tianyu Gao, Hao Peng and Xiaoli Bai (Part IV) 

AAS 19-698 Not Assigned 
AAS 19-699 Applied Reachability Analysis of Spacecraft Rendezvous with a Tumbling Object, 
   Costantinos Zagaris and Marcello Romano (Part I) 

AAS 19-700 Deep Imitation Learning and Clustering in Astrodynamics, Roberto Furfaro, 
   Kristofer Drozd, Richard Linares, Brian Gaudet and Andrea Scorsoglio (Part IV) 

AAS 19-701 A Time-Dependent TSP Formulation for the Design of an Active Debris Removal 
   Mission Using Simulated Annealing, Lorenzo Federici, Alessandro Zavoli and 
   Guido Colasurdo (Part II) 

AAS 19-702 Recommended Methods for Setting Mission Conjunction Analysis Hard Body 
   Radii, Alinda K. Mashiku and Matthew D. Hejduk (Part IV) 

AAS 19-703 Predicting Satellite Close Approaches Using Statistical Parameters in the 
   Context of Artificial Intelligence, A. Mashiku, C. Frueh, N. Memarsadeghi,  
   E. Gizzi, M. Zielinski and A. Burton (Part IV) 

AAS 19-704 New Horizons’ Navigation Performance Throughout the Extended Mission to 
   Ultima Thule, Jeremy Bauman, Fred Pelletier, Bobby Williams,  
   Joel Fischetti,Dale Stanbridge, Michael Salinas, Derek Nelson,  
   Erik Lessac-Chenen, John Pelgrift, Peter Wolff, S. A. Stern, J. Spencer, M. Buie, 

333



   S. Porter, C. Olkin, L. A. Young, Y. Guo, W. R. Schlei, G. Rogers, H. A. Weaver 
   and M. Holdridge (Part III) 

AAS 19-705 Libration Orbit Eclipse Avoidance Maneuver Study for the James Webb Space  
   Telescope Mission, Wayne Yu and Karen Richon (Part II) 

AAS 19-706 Constrained Motion Analysis and Nonlinear Optimal Tracking Control of  
   Two-Craft Coulomb Formation in Elliptic Chief Orbits, M. Wasif Memon,  
   Morad Nazari, Dongeun Seo and Richard Prazenica (Part I) 

AAS 19-707 Real-Time Thermospheric Density Estimation Via Two-Line-Element Data 
   Assimilation, David J. Gondelach and Richard Linares (Part IV) 

AAS 19-708 Dynamics of a Non-Rigid Orbital Siphon at a Near-Earth Asteroid, Andrea Viale, 
   Colin McInnes and Matteo Ceriotti (Part III) 

AAS 19-709 Sensitivity of Trajectories to Mass Parameters in the Restricted Full Three Body 
   Problem, Alex B. Davis and Daniel J. Scheeres (Part III) 

AAS 19-710 to -712  Not Assigned 
AAS 19-713 Morse-Lyapunov-Based Decentralized Consensus Control of Rigid Body 
   Spacecraft in Orbital Relative Motion, Eric A. Butcher and Mohammad Maadani 
   (Part I) 

AAS 19-714 OSIRIS-REx Orbit Determination Performance During the Navigation Campaign, 
   Jason M. Leonard, Jeroen L. Geeraert, Brian R. Page, Andrew S. French,  
   Peter G. Antreasian, Coralie D. Adam, Daniel R. Wibben, Michael C. Moreau and 
   Dante S. Lauretta (Part III) 

AAS 19-715 Not Assigned 
AAS 19-716 Application of Dual Number Theory to Statistical Orbital Determination, 
   Christopher B. Rabotin (Part III) 

AAS 19-717 OSIRIS-REx Navigation Small Force Models, Jeroen L. Geeraert, 
   Jason M. Leonard, Patrick W. Kenneally, Peter G. Antreasian,  
   Michael C. Moreau and Dante S. Lauretta (Part I) 

AAS 19-718 Fuel-Efficient Powered Descent Guidance on Planetary Bodies Via Theory of 
   Functional Connections 1: Solution of the Equations of Motion, Enrico Schiassi, 
   Roberto Furfaro, Hunter Johnston and Daniele Mortari (Part I) 

AAS 19-719 Copernicus 5.0: Latest Advances in JSC’s Spacecraft Trajectory Optimization 
   and Design System, Jacob Williams, Anubhav H. Kamath, Randy A. Eckman,  
   Gerald L. Condon, Ravishankar Mathur and Diane C. Davis (Part II) 

AAS 19-720 A New Look at Predictive Probability of Collision, Predictive Maneuver Trade 
   Spaces and the Probability of a Missed Mitigation, Mark A. Vincent and  
   Theodore Sweetser (Part IV) 

AAS 19-721 Not Assigned 
AAS 19-722 Preliminary Surface Navigation Analysis for the Dragonfly Mission, Ben Schilling, 
   Benjamin Villac and Douglas Adams (Part I) 

AAS 19-723 Frequency Structure of the NRHO Family in the Earth-Moon System, David Lujan 
   and Daniel J. Scheeres (Part I) 

AAS 19-724 Transfer Trajectory Options for Servicing Sun-Earth-Moon Libration Point 
   Missions, David C. Folta and Cassandra Webster (Part I) 

AAS 19-725 Improved Atmospheric Estimation for Aerocapture Guidance, Evan Roelke,  
   Phil D. Hattis and R. D. Braun (Part III) 
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AAS 19-726 CHANGO: A Software Tool for Boost Stage Guidance of the Space Launch 
   System Exploration Mission 1, Matt Hawkins, Naeem Ahmad and  
   Paul Von der Porten (Part I) 

AAS 19-727 Not Assigned 
AAS 19-728 Accessing Highly Out-of-Ecliptic Science Orbits Via Low-Energy, Low-Thrust 
   Transport Mechanisms, Jeffrey Stuart, Rodney L. Anderson, Christopher Sullivan 
   and Natasha Bosanac (Part I) 

AAS 19-729 Not Assigned 
AAS 19-730 Multiple Small-Satellite Salvage Mission Sequence Planning for Debris 
   Mitigation, Guanwei He and Robert G. Melton (Part IV) 

AAS 19-731 Analytic Approximation for Fixed-Angle Low-Thrust Trajectories Via Linear 
   Perturbation Theory, Guanwei He and Robert G. Melton (Part II) 

AAS 19-732 An Analysis of the Theory of Functional Connections Subject to Inequality 
   Constraints, Hunter Johnston, Carl Leake and Daniele Mortari (Part I) 

AAS 19-733 Rapid Evaluation of Low-Thrust Transfers From Elliptical Orbits to Geostationary 
   Orbit, Mason J. Kelchner and Craig A. Kluever (Part II) 

AAS 19-734 An Explanation and Implementation of Multivariate Theory of Functional 
   Connections Via Examples, Carl Leake and Daniele Mortari (Part I) 

AAS 19-735 Singularity-Free Extraction of a Dual Quaternion from Feature-Based 
   Representation of Motion, Daniel Condurache (Part IV) 

AAS 19-736 Orbit Propagation Via the Theory of Functional Connections, Hunter Johnston 
   and Daniele Mortari (Part II) 

AAS 19-737 Not Assigned 
AAS 19-738 Multi-Arc Filtering During the Navigation Campaign of the Osiris-Rex Mission, 
   Andrew S. French,  Jason M. Leonard, Jeroen L. Geeraert, Brian R. Page,  
   Peter G. Antreasian, Michael C. Moreau, Jay W. McMahon, Daniel J. Scheeres 
   and Dante S. Lauretta (Part III) 

AAS 19-739 Linear Covariance Analysis of Closed-Loop Attitude Determination and Control 
   System of Sub-Arcsec Pointing Three-Axes Spacecraft, Divya Bhatia  
   (Part I) 

AAS 19-740 Survey of Ballistic Lunar Transfers to Near Rectilinear Halo Orbit,  
   Nathan L. Parrish, Ethan Kayser, Shreya Udupa, Jeffrey S. Parker,  
   Bradley W. Cheetham and Diane C. Davis (Part I) 

AAS 19-741 Optimum Momentum Bias for Zero-Feedback Reaction Wheel Slews,  
   Lara C. Magallanes and Mark Karpenko (Part IV) 

AAS 19-742 Optimal Deorbit from Low Earth Orbit with Electric Propulsion, Nathan L. Parrish, 
   Jeffrey S. Parker, Cameron Meek and Aurelie Heritier (Part I) 

AAS 19-743 Not Assigned 
AAS 19-744 Enabling Broad Energy Range Computations at Libration Points Using Isolating 
   Neighborhoods, Rodney L. Anderson, Robert W. Easton and Martin W. Lo  
   (Part I) 

AAS 19-745 Endgame Design for Europa Lander: Ganymede to Europa Approach,  
   Rodney L. Anderson, Stefano Campagnola, Dayung Koh, Timothy P. McElrath 
   and Robyn M. Woollands (Part II) 
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AAS 19-746 A Study on Effective Initial Guess Finding Method Based on Bézier Curves: Orbit 
   Determination Applications, Daegyun Choi, Sungwook Yang, Henzeh Leeghim 
   and Donghoon Kim (Part III) 

AAS 19-747 The First Commercial Lunar Lander Mission: Beresheet, Haim Shyldkrot,  
   Eran Shmidt, Daniela Geron, Joseph Kronenfeld,Mike Loucks, John Carrico,  
    Lisa Policastri and John Taylor (Part III) 

AAS 19-748 A Survey of Mission Opportunities to Trans Neptunian Objects, Part VI: A Search  
   for Multi-Target Missions, Daniel Johnson, Zackery Crum, Garrett Mitchell, 
   Samuel Walters, Adam Dalton, Brandon Davis, Ben Dolmovich, Meghan Green, 
   Amanda Williams, Gerald Wise and James Evans Lyne (Part I) 

AAS 19-749 Spacecraft Maneuver Strategy Optimization for Detection Avoidance Using 
   Reachability Sets, Connor N. Clary, Jason A. Reiter and David B. Spencer  
   (Part II) 

AAS 19-750 Optimization in Space-Based Pursuit-Evasion Games Through Competitive 
   Coevolution, Jason A. Reiter and David B. Spencer (Part II) 

AAS 19-751 Spacecraft Maneuver Strategy Optimization for Detection Avoidance Using 
   Reinforcement Learning, Jason A. Reiter, David B. Spencer and Richard Linares 
   (Part IV) 

AAS 19-752 Implementing an Idan Speyer Cauchy Drag Estimator, Craig A. McLaughlin, 
   Micaela Crispin and Frank J. Bonet (Part III) 

AAS 19-753 Extended Phase-Space Realization for Attitude Dynamics of an Axisymmetric 
   Body in Eccentric Orbit, Roshan T. Eapen, Manoranjan Majji and Kyle T. Alfriend 
   (Part I) 

AAS 19-754 An Estimation-Based Drag Coefficient Model for Tracking Variations Due to 
   Attitude and Orbital Motion, Vishal Ray and Daniel J. Scheeres (Part III) 

AAS 19-755 Not Assigned 
AAS 19-756 Earth-Moon Halo Orbit – Gateway or Tollbooth?, David W. Dunham,  
   Kjell Stakkestad, James V. McAdams, Anthony Genova and Jerry Horsewood 
   (Part III) 

AAS 19-757 Root Locus Method of Determining Sensitivity of Polynomial Systems to Error in 
   Astrodynamics Applications, Alex Sizemore, Chris Ertl, Troy Henderson,  
   David Zuehlke, Heidi Darsey and T. Alan Lovell (Part III) 

AAS 19-758 Mission Feasibility from Trajectory Optimization and the State of Space Systems 
   Research at the University of Auckland, Darcey R. Graham,  
   Nicholas J. Rattenbury and John E. Cater (Part II) 

AAS 19-759 to -760  Not Assigned 
AAS 19-761 Fast Estimation Method for Trajectories to Near-Earth Asteroids,  
   Lorenzo Casalino, Luigi Mascolo and Alessandro Bosa (Part III) 

AAS 19-762 Design and Reconstruction of the Hayabusa2 Precision Landing on Ryugu,  
   S. Kikuchi, F. Terui, N. Ogawa, T. Saiki, G. Ono, K. Yoshikawa, Y. Takei,  
   Y. Mimasu, H. Ikeda, H. Sawada, T. Morota, N. Hirata, N. Hirata, T. Kouyama,  
   S. Kameda and Y. Tsuda (Part III) 

AAS 19-763 A Convex Optimization Approach for Finite-Thrust Time-Constrained Cooperative 
   Rendezvous, Boris Benedikter, Alessandro Zavoli and Guido Colasurdo (Part II) 

AAS 19-764 Precise Rendezvous Guidance in Cislunar Orbit Via Surrogate Modelling, 
   Satoshi Ueda (Part I) 
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AAS 19-765 Opportunities and Limitations of Adaptive Augmented Control for Launch Vehicle 
   Attitude Control in Atmospheric Flight, Domenico Trotta, Alessandro Zavoli, 
   Guido De Matteis and Agostino Neri (Part IV) 

AAS 19-766 Not Assigned 
AAS 19-767 Missed Thrust Analysis for a Potential Mars Sample Return Orbiter,  
   José M. Sánchez Pérez and Gábor I. Varga (Part II) 

AAS 19-768 Dependent Variable Integration for Event Finding with Validation in Orbit 
   Propagation, Anthony Iannuzzi (Part II) 

AAS 19-769 Linking Low-to High-Energy Dynamics of Invariant Manifold Tubes, Transit 
   Orbits, and Singular Collision Orbits, Kenta Oshima (Part I) 

AAS 19-770 Accurate Low-Thrust Orbit Transfer Solutions in Equinoctial Elements Using an 
   Analytic Representation of the Geopotential, Zachary J. Folcik and Paul J. Cefola 
   (Part II) 

AAS 19-771 to -772  Not Assigned 
AAS 19-773  Neural Network Based Optimal Control: Resilience to Missed Thrust Events for 
   Long Duration Transfers, Ari Rubinsztejn, Rohan Sood and Frank E. Laipert  
   (Part IV) 

AAS 19-774 Solar Sail Trajectories and Orbit Phasing of Modular Spacecraft for Segmented 
   Telescope Assembly About Sun-Earth L2, Gabriel J. Soto, Erik Gustafson, 
   Dmitry Savransky, Jacob Shapiro and Dean Keithly (Part II) 

AAS 19-775 Optimal Quadrature-Based Filtering in Regularized Coordinates for Orbit 
   Determination, David Ciliberto, Puneet Singla, Joe Raquepas and  
   Manoranjan Majji (Part III) 

AAS 19-776 Uncertainty Characterization and Surrogate Modeling for Angles Only Initial Orbit 
   Determination, David Schwab, Puneet Singla and Joseph Raquepas (Part IV) 

AAS 19-777 ICESat-2 Precision Pointing Determination, Sungkoo Bae, Ben Helgeson, 
   Michael James and Jonathan Sipps (Part IV) 

AAS 19-778 Not Assigned 
AAS 19-779 Interplanetary Low-Thrust Design Using Proximal Policy Optimization,  
   Daniel Miller, Jacob A. Englander and Richard Linares (Part II) 

AAS 19-780 Quasi-Heliosynchronous Orbits, M. L. G. T. X. Costa, R. Vilhena de Moraes,  
   A. F. B. A. Prado and J. P. S. Carvalho (Part II) 

AAS 19-781 Analysis of Relative Merits of Unscented and Extended Kalman Filters in Orbit 
   Determination, James Woodburn and Vincent Coppola (Part III) 

AAS 19-782 Homo- And Heteroclinic Connections in the Spatial Solar-Sail Earth-Moon Three 
   Body Problem, Jeannette Heiligers (Part II) 

AAS 19-783 Validation of Simulation of Space Net Deployment Phase with Parabolic Flight 
   Experiment Data, Rachael Gold and Eleonora M. Botta (Part III) 

AAS 19-784 Adaptive Online Learning Strategy for Post-Capture Attitude Takeover Control of 
   Noncooperative Space Target, Yueyong Lyu, Yuhan Liu, Zhaowei Sun and 
   Guangfu Ma (Part IV) 

AAS 19-785 Asteroid Deflection with Active Boulder Removal, Daniel N. Brack and  
   Jay W. McMahon (Part I) 

AAS 19-786 to -787  Not Assigned 
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AAS 19-788 Light Curve Inversion Observability Analysis, Alex M. Friedman, Siwei Fan and 
   Carolin Frueh (Part III) 

AAS 19-789 Parker Solar Probe Mission Design, Yanping Guo (Part II) 

AAS 19-790 to -792  Not Assigned 
AAS 19-793 Robust Optimal Fuzzy Sun-Point Control of a Large Solar Power Satellite Subject 
   to Actuators Amplitude And Rate Constraints, Chokri Sendi, Antonio Won and 
   Luke McCue (Part III) 

AAS 19-794 NLPAROPT: A Parallel Nonlinear Programming Solver - Applications to 
   Astrodynamics Related Optimization, Ryne Beeson, Patrick Haddox,  
   Samah Karim, Bindu Jagannatha, Devin Bunce, Kyle Cochran, Edgar Solomonik 
   and Alexander Ghosh (Part III) 

AAS 19-795 Not Assigned 
AAS 19-796 Deep Space Atomic Clock Mission Overview, Todd A. Ely, Jill Seubert,  
   John Prestage, Robert Tjoelker, Eric Burt, Angela Dorsey, Daphna Enzer,  
   Randy Herrera, Da Kuang, David Murphy,  David Robison,  Gabrielle Seal,  
   Jeff Stuart and Rabi Wang (Part I) 

AAS 19-797 Radiometric Autonomous Navigation Fused with Optical for Deep Space 
   Exploration, Todd A. Ely, Jill Seubert, Nicholas Bradley, Ted Drain and  
   Shyam Bhaskaran (Part III) 

AAS 19-798 Stability of Highly Inclined Orbits around the Asteroid (153591) 2001 SN263, 
   Diogo M. Sanchez and Antonio F.B.A. Prado (Part I) 

AAS 19-799 Survey of Low-Thrust, Earth-Mars Cyclers, Robert Potter, James Longuski and 
   Sarag Saikia (Part II) 

AAS 19-800 Leveraging Nasa’s Lunar Gateway and Human Landing System for Low-Cost 
   Mars Orbital Missions, Robert Potter, Sarag Saikia and James Longuski (Part II) 

AAS 19-801 Sun-Avoidance Slew Planning Algorithm with Pointing and Actuator Constraints, 
   Mohammad Ayoubi and Junette Hsin (Part I) 

AAS 19-802 Optimization of Low Thrust Transfer Orbits of a Spacecraft Considering the 
   Radiation Hazard from the Van Allen Belts, Rodrigo N. Schmitt,  
   Alexander Sukhanov, Antonio F. B. A. Prado and Gerson Barbosa (Part I) 

AAS 19-803 Not Assigned 
AAS 19-804 Analytical State Transition Matrix for Dual-Quaternions for Spacecraft Pose 
   Estimation, Andrew M. S. Goodyear, Puneet Singla and David B. Spencer  
    (Part I) 

AAS 19-805 Application of Udwadia-Kalaba Formulation to Three-Body Problem,  
   Harshkumar Patel, Troy A. Henderson and Morad Nazari (Part II) 

AAS 19-806 L2 Station Keeping Maneuver Strategy for the James Webb Space Telescope, 
   Jeremy Petersen (Part II) 

AAS 19-807 A Technique for Space Object Catalog Evaluation, A. M. Segerman, Z. J. Sibert, 
   F. R. Hoots and P. W. Schumacher, Jr. (Part IV) 

AAS 19-808 Dynamical Structures Nearby NRHOs with Applications in Cislunar Space,  
   Emily M. Zimovan-Spreen and Kathleen C. Howell (Part I) 

AAS 19-809 Adaptive and Dynamically Constrained Process Noise Estimation for Orbit 
   Determination, Nathan Stacey and Simone D’Amico (Part I) 
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AAS 19-810 Second-Order Solution for Relative Motion on Eccentric Orbits in Curvilinear 
   Coordinates, Matthew Willis, Kyle T. Alfriend and Simone D’Amico (Part I) 

AAS 19-811 A Unified Framework for Aerocapture Systems Analysis,  
   Athul Pradeepkumar Girija, Sarag J. Saikia, James M. Longuski and  
   James A. Cutts (Part II) 

AAS 19-812 Attitude Determination Strategy Based on Kalman Filter for the Sport CubeSat 
   Science Mission, Kátia M. Santos, André L. da Silva, Willer G. Santos,  
   Valdemir Carrara, Charles Swenson, Lidia H. S. Satok and Luis E. V. L. Costa 
   (Part IV) 

AAS 19-813 Deep Learning Applications to Astrodynamics Problems, Jordan Murphy and 
   Daniel Scheeres (Part IV) 

AAS 19-814 Transfers from GTO to Sun-Earth Libration Orbits, Juan A. Ojeda Romero and 
   Kathleen C. Howell (Part I) 

AAS 19-815 Aerocapture Performance Analysis for a Neptune Mission Using a Heritage 
   Blunt-Body Aeroshell, Athul Pradeepkumar Girija, Sarag J. Saikia,  
   James M. Longuski, Shyam Bhaskaran, Matthew S. Smith and James A. Cutts 
   (Part II) 

AAS 19-816 Mid-Course Correction Contingency Analysis for the James Webb Space 
   Telescope, Taabish Rashied, Benjamin Stringer, Jeremy Petersen and  
   Karen Richon (Part II) 
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